19 resultados para fractional evolution equation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
By making use of the evolution equation of the damage field as derived from the statistical mesoscopic damage theory, we have preliminarily examined the inhomogeneous damage field in an elastic-plastic model under constant-velocity tension. Three types of deformation and damage field evolution are presented. The influence of the plastic matrix is examined. It seems that matrix plasticity may defer the failure due to damage evolution. A criterion for damage localization is consistent with the numerical results.
Resumo:
Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.
Resumo:
Numerical simulation of an oil slick spreading on still and wavy surfaces is described in this paper. The so-called sigma transformation is used to transform the time-varying physical domain into a fixed calculation domain for the water wave motions and, at the same time, the continuity equation is changed into an advection equation of wave elevation. This evolution equation is discretized by the forward time and central space scheme, and the momentum equations by the projection method. A damping zone is set up in front of the outlet boundary coupled with a Sommerfeld-Orlanski condition at that boundary to minimize the wave reflection. The equations for the oil slick are depth-averaged and coupled with the water motions when solving numerically. As examples, sinusoidal and solitary water waves, the oil spread on a smooth plane and on still and wavy water surfaces are calculated to examine the accuracy of simulating water waves by Navier-Stokes equations, the effect of damping zone on wave reflection and the precise structures of oil spread on waves.
Resumo:
A constitutive model, based on an (n + 1)-phase mixture of the Mori-Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place.
Resumo:
In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates epsilon greater than or equal to 10(3) s(-1)). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.
Resumo:
The effects of stochastic extension on the statistical evolution of the ideal microcrack system are discussed. First, a general theoretical formulation and an expression for the transition probability of extension process are presented, then the features of evolution in stochastic model are demonstrated by several numerical results and compared with that in deterministic model.
Resumo:
We investigate the composition and the equation of state of the kaon condensed phase in neutrino-free and neutrino-trapped star matter within the framework of the Brueckner-Hartree-Fock approach with three-body forces. We find that neutrino trapping shifts the onset density of kaon condensation to a larger baryon density, and reduces considerably the kaon abundance. As a consequence, when kaons are allowed, the equation of state of neutrino-trapped star matter becomes stiffer than the one of neutrino free matter. The effects of different three-body forces are compared and discussed. Neutrino trapping turns out to weaken the role played by the symmetry energy in determining the composition of stellar matter, and thus reduces the difference between the results obtained by using different three-body forces.
Resumo:
The process of damage evolution concerns various scales, from micro- to macroscopic. How to characterize the trans-scale nature of the process is on the challenging frontiers of solid mechanics. In this paper, a closed trans-scale formulation of damage evolution based on statistical microdamage mechanics is presented. As a case study, the damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that the following dimensionless numbers: reduced Mach number M, damage number S, stress wave Fourier number P, intrinsic Deborah number D*, and the imposed Deborah number De*, govern the whole process of deformation and damage evolution. The evaluation of P and the estimation of temperature increase show that the energy equation can be ignored as the first approximation in the case of spallation. Hence, apart from the two conventional macroscopic parameters: the reduced Mach number M and damage number S, the damage evolution in spallation is mainly governed by two microdamage-relevant parameters: the Deborah numbers D* and De*. Higher nucleation and growth rates of microdamage accelerate damage evolution, and result in higher damage in the target plate. In addition, the mere variation in nucleation rate does not change the spatial distribution of damage or form localized rupture, while the increase of microdamage growth rate localizes the damage distribution in the target plate, which can be characterized by the imposed Deborah number De*.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
In this paper, the effect of current on the evolution of a solitary wave is studied. The governing equation in the far field, KdV equation with variable coefficients, is derived. A solitary wave solution is obtained. The fission of a solitary wave is discussed, and the fissible region on the Q~h2-plane and the criterion of the number of the solitary waves after fission are found.
Resumo:
An exact quantum master equation formalism is constructed for the efficient evaluation of quantum non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. A novel truncation scheme is further proposed and compared with other approaches to close the resulting hierarchically coupled equations of motion. The interplay between system-bath interaction strength, non-Markovian property, and required level of hierarchy is also demonstrated with the aid of simple spin-boson systems. (C) 2005 American Institute of Physics.