29 resultados para fractal sets
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
给出相对论力学中普遍定律的实用判别法和协变集的实用构造法,还给出实现非普遍定律的“可导出性”的一种实用方法.
Resumo:
The permeability of the fractal porous media is simulated by Monte Carlo technique in this work. Based oil the fractal character of pore size distribution in porous media, the probability models for pore diameter and for permeability are derived. Taking the bi-dispersed fractal porous media as examples, the permeability calculations are performed by the present Monte Carlo method. The results show that the present simulations present a good agreement compared with the existing fractal analytical solution in the general interested porosity range. The proposed simulation method may have the potential in prediction of other transport properties (such as thermal conductivity, dispersion conductivity and electrical conductivity) in fractal porous media, both saturated and unsaturated.
Resumo:
The assumption of constant rock properties in pressure-transient analysis of stress-sensitive reservoirs can cause significant errors in the estimation of temporal and spatial variation of pressure. In this article, the pressure transient response of the fractal medium in stress-sensitive reservoirs was studied by using the self-similarity solution method and the regular perturbation method. The dependence of permeability on pore pressure makes the flow equation strongly nonlinear. The nonlinearities associated with the governing equation become weaker by using the logarithm transformation. The perturbation solutions for a constant pressure production and a constant rate production of a linear-source well were obtained by using the self-similarity solution method and the regular perturbation method in an infinitely large system, and inquire into the changing rule of pressure when the fractal and deformation parameters change. The plots of typical pressure curves were given in a few cases, and the results can be applied to well test analysis.
Resumo:
Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.
Resumo:
An approximate model, a fractal geometry model, for the effective thermal conductivity of three-phase/unsaturated porous media is proposed based on the thermal-electrical analogy technique and on statistical self-similarity of porous media. The proposed thermal conductivity model is expressed as a function of porosity (related to stage n of Sierpinski carpet), ratio of areas, ratio of component thermal conductivities, and saturation. The recursive algorithm for the thermal conductivity by the proposed model is presented and found to be quite simple. The model predictions are compared with the existing measurements. Good agreement is found between the present model predictions and the existing experimental data. This verifies the validity of the proposed model. (C) 2004 American Institute of Physics.
Resumo:
The analytical expressions of the fractal dimensions for wetting and non-wetting phases for unsaturated porous media are derived and are found to be a function of porosity, maximum and minimum pore sizes as well as saturation. There is no empirical constant in the proposed fractal dimensions. It is also found that the fractal dimensions increase with porosity of a medium and are meaningful only in a certain range of saturation S-w, i.e. S-w > S-min for wetting phase and S-w < S-max for non-wetting phase at a given porosity, based on real porous media for requirements from both fractal theory and experimental observations. The present analysis of the fractal dimensions is verified to be consistent with the existing experimental observations and it makes possible to analyze the transport properties such as permeability, thermal dispersion in unsaturated porous media by fractal theory and technique.
Resumo:
Unsteady and two-dimensional numerical simulation is applied to study the transition process from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a liquid bridge in the half-floating zone. The results of numerical tests show clearly the fractal structure of period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed with increasing temperature difference. The Feigenbaum universal constant is given by the present paper as delta(4) = 4.853, which can be compared with the theoretical value 4.6642016.
Resumo:
Short fatigue crack behaviour in a weld metal has been further investigated. The Schmid factor and the fractal dimension of short cracks on iso-stress specimens subjected to reversed bending have been determined and then applied to account for the distribution and orientation characteristics of short fatigue cracks. The result indicates that the orientation preference of short cracks is attributed to the large values of Schmid factor at relevant grains. The Schmid factors of most slip systems, which produced short cracks, are less than or equal to 0.4. Crack length measurements reveal that short crack path, compared to that of long crack, possesses a more stable and relatively larger value of fractal dimension. This is regarded as one of the typical features of short cracks.
Resumo:
A fractal approach was proposed to investigate the meso structures and size effect of metallic foams: For a series At foams of different relative densities, the information dimension method was applied to measure meso structures. The generalized sierpinski carpet was introduced to map the meso structures of the foam according to specific dimension. The results show that the fractal-based model can not only reveal the variation of yield strength with specimen size, but also bridge the meso structures and mechanical proper-ties of Al foams directly. Key words: metallic foams; fractal; size effect; meso structures
Resumo:
This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America
Resumo:
The dissociation process of gas hydrate was regarded as a gas-solid reaction without solid production layer when the temperature was above the zero centigrade. Based on the shrinking core model and the fractal theory, a fractional dimension dynamical model for gas hydrate dissociation in porous sediment was established. The new approach of evaluating the fractal dimension of the porous media was also presented. The fractional dimension dynamical model for gas hydrate dissociation was examined with the previous experimental data of methane hydrate and carbon dioxide hydrate dissociations, respectively. The calculated results indicate that the fractal dimensions of porous media acquired with this method agree well with the previous study. With the absolute average deviation (AAD) below 10%, the present model provided satisfactory predictions for the dissociation process of methane hydrate and carbon dioxide hydrate.