71 resultados para foot to ground contact area
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.
Resumo:
Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical phi numerically calculated is less than the one calculated by use of the limit equilibrium method for the same C. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.
Resumo:
Molecular dynamics simulations of nanoindentation are performed on monocrystal copper. A new "contact atoms" method is presented for calculating the contact area. Compared with conventional methods, this method can provide the contact area more accurately not only for sink-in but also for pile-up situation. The effect of tip radius on indentation is investigated too. The results indicate that the measured hardness of the material will become higher as the tip radius increases.
Resumo:
Branching ratios and half-lives of alpha-decay to the ground-state rotational bands as well as the high-lying excited states of even-even nuclei have been calculated in the framework of the generalized liquid drop model (GLDM) and Royer's formula that we improved very recently. The calculation covers the isotopic chains from Ra to No in the mass regions 222 <= A <= 252 and 88 <= Z <= 102. The agreement between the calculated results and the experimental data indicates the reliability of investigating the properties of the unfavored alpha-decay with our method, especially the improved Royer's formula, which is very valuable for the analysis of experimental data. In addition, the dependence of half-lives on excitation energies of daughter nuclei has been investigated. It is shown that the influence on half-lives becomes stronger and stronger with the increase of the excitation energies.
Resumo:
A new area function is introduced and applied to a Berkovich tip in order to characterize the contact projected area between an indenter and indented material. The function can be related directly to tip-rounding, thereby having obviously physical meaning. Nanoindentation experiments are performed on a commercial Nano Indenter XPsystem. The other two area functions introduced by Oliver and Pharr and by Thurn and Cook respectively are involved in this paper for comparison. By comparison from experimental results among different area functions, the indenter tip described by the proposed area function here is very close to the experimental indenter.
Resumo:
We derive, using dimensional analysis and finite element calculations, several scaling relationships for conical indentation in elastic-plastic solids with work hardening. Using these scaling relationships, we examine the relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids. The scaling relationships also provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They may also be helpful as a guide to numerical and finite element calculations of indentation problems.
Resumo:
In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs' parameter on the pull-off process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle (pi/2 is the maximum value), smaller a/R or larger nondimensional parameter value of Delta gamma/E*R. Relations among the contact half width, the external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the present paper as basic solutions are helpful and applicable for experimenters and engineers.
Resumo:
要: We have recently proposed a generalized JKR model for non-slipping adhesive contact between two elastic spheres subjected to a pair of pulling forces and a mismatch strain (Chen, S., Gao, H., 2006c. Non-slipping adhesive contact between mismatched elastic spheres: a model of adhesion mediated deformation sensor. J. Mech. Phys. Solids 54, 1548-1567). Here we extend this model to adhesion between two mismatched elastic cylinders. The attention is focused on how the mismatch strain affects the contact area and the pull-off force. It is found that there exists a critical mismatch strain at which the contact spontaneously dissociates. The analysis suggests possible mechanisms by which mechanical deformation can affect binding between cells and molecules in biology.
Resumo:
The transitions between the different contact models which include the Hertz, Bradley, Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis-Dugdale (MD) models are revealed by analyzing their contact pressure profiles and surface interactions. Inside the contact area, surface interaction/adhesion induces tensile contact pressure around the contact edge. Outside the contact area, whether or not to consider the surface interaction has a significant influence on the contact system equilibrium. The difference in contact pressure due to the surface interaction inside the contact area and the equilibrium influenced by the surface interaction outside the contact area are physically responsible for the different results of the different models. A systematic study on the transitions between different models is shown by analyzing the contact pressure profiles and the surface interactions both inside and outside the contact area. The definitions of contact radius and the flatness of contact surfaces are also discussed. (C) Koninklijke Brill NV, Leiden, 2008.
Resumo:
A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.
Resumo:
Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.
Resumo:
The work done during indentation is examined using dimensional analysis and finite element calculations for conical indentation in elastic-plastic solids with work hardening. An approximate relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work in indentation is found. Consequently, the ratio of hardness to elastic modulus may be obtained directly from measuring the work of indentation. Together with a well-known relationship between elastic modulus, initial unloading slope, and contact area, a new method is then suggested for estimating the hardness and modulus of solids using instrumented indentation with conical or pyramidal indenters.
Resumo:
Three models, JKR (Johnson, Kendall and Roberts), DMT (Derjaguin, Muller, and Toporov) andMD (Maugis-Dugdale),are compared with the Hertz model in dealing with nano-contact problems. It has been shown that both the dimensionless load parameter, P D P=.1/4