7 resultados para ethics in the real world
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Considering the fact, in the real world, that information is transmitted with a time delay, we study an evolutionary spatial prisoner's dilemma game where agents update strategies according to certain information that they have learned. In our study, the game dynamics are classified by the modes of information learning as well as game interaction, and four different combinations, i.e. the mean-field case, case I, case II and local case, are studied comparatively. It is found that the time delay in case II smoothes the phase transition from the absorbing states of C (or D) to their mixing state, and promotes cooperation for most parameter values. Our work provides insights into the temporal behavior of information and the memory of the system, and may be helpful in understanding the cooperative behavior induced by the time delay in social and biological systems.
Resumo:
数据是地理信息系统 (GIS)应用的核心。现实世界的数据具有普遍的多样性 ,关于 GIS接受不同数据的研究已成为当前 GIS研究中的一个难点和热点。从常见空间数据类型的格式、GIS接受外部空间数据的方式以及 GIS接受外部空间数据中的数据精度、比例尺、坐标变换等几个方面 ,对外部空间数据处理系统的数据向 GIS转换的问题进行了探讨 ,同时以通用 GIS工具软件 ARC/INFO为例分析了其接受外部矢量空间数据的方式。
Resumo:
数据是地理信息系统 (GIS)应用的核心。现实世界的数据具有普遍的多样性 ,关于 GIS接受不同数据的研究已成为当前 GIS研究中的一个难点和热点。本文根据通用 GIS工具软件 ARC/INFO接受外部空间数据的方式和图形分析软件 Surfer的数据格式特征 ,运用特定的处理方法实现了由 Surfer格式数据向 ARC/ INFO矢量格式数据 (Coverage)的转换 ,使 ARC/ INFO接受外部数据格式的范围拓宽 ,数据处理能力增强。
Resumo:
The space currents definitely take effects on electromagnetic environment and also are scientific highlight in the space research. Space currents as a momentum and energy provider to Geospace Storm, disturb the varied part of geomagnetic field, distort magnetospheric configuration and furthermore take control of the coupling between magnetosphere and ionosphere. Due to both academic and commercial objectives above, we carry on geomagnetic inverse and theoretical studies about the space currents by using geomagnetic data from INTERMAGNET. At first, we apply a method of Natural Orthogonal Components (NOC) to decomposition the solar daily variation, especially for (solar quiet variation). NOC is just one of eign mode analysis, the most advantage of this method is that the basic functions (BFs) were not previously designated, but naturally came from the original data so that there are several BFs usually corresponding to the process really happened and have more physical meaning than the traditional spectrum analysis with the fixed BFs like Fourier trigonometric functions. The first two eign modes are corresponding to the and daily variation and their amplitudes both have the seasonal and day-to-day trend, that will be useful for evaluating geomagnetic activity indices. Because of the too strict constraints of orthogonality, we try to extend orthogonal contraints to the non-orthogonal ones in order to give more suitable and appropriate decomposition of the real processes when the most components did not satisfy orthogonality. We introduce a mapping matrix which can transform the real physical space to a new mathematical space, after that process, the modified components which associated with the physical processes have satisfied the orthogonality in the new mathematical space, furthermore, we can continue to use the NOC decomposition in the new mathematical space, and then all the components inversely transform back to original physical space, so that we would have finished the non-orthogonal decomposition which more generally in the real world. Secondly, geomagnetic inverse of the ring current’s topology is conducted. Configurational changes of the ring current in the magnetosphere lead to different patterns of disturbed ground field, so that the global configuration of ring current can be inferred from its geomagnetic perturbations. We took advantages of worldwide geomagnetic observatories network to investigate the disturbed geomagnetic field which produced by ring current. It was found that the ring current was not always centered at geomagnetic equator, and significantly deviated off the equator during several intense magnetic storms. The deviation owing to the tilting and latitudinal shifting of the ring current with respect to the earth’s dipole can be estimated from global geomagnetic survey. Furthermore those two configurational factors which gave a quantitative description of the ring current configuration, will be helpful to improve the Dst calibration and understand the dependence of ring current’s configuration on the plasma sheet location relative to the equator when magnetotail field warped. Thirdly, the energization and physical acceleration process of ring current during magnetic storm has been proposed. When IMF Bz component increase, the enhanced convection electric field drive the plasma injection into the inner magnetosphere. During the transport process, a dynamic heating is happened which make the particles more ‘hot’ when the injection is more deeply inward. The energy gradient along the injection path is equivalent to a kind of force, which resist the plasma more earthward injection, as a diamagnetic effect of the magnetosphere anti and repellent action to the exotically injected plasma. The acceleration efficiency has a power law form. We use analytical way to quantitatively describe the dynamical process by introducing a physical parameter: energization index, which will be useful to understand how the particle is heated. At the end, we give a scheme of how to get the from storm time geomagnetic data. During intense magnetic storms, the lognormal trend of geomagnetic Dst decreases depend on the heating dynamic of magnetosphere controlling ring current. The descending pattern of main phase is governed by the magnetospheric configuration, which can be describled by the energization index. The amplitude of Dst correlated with convection electric field or south component of the solar wind. Finally, the Dst index is predicted by upstream solar wind parameter. As we known space weather have posed many chanllenges and impacts on techinal system, the geomagnetic index for evaluating the activity space weather. We review the most popular Dst prediction method and repeat the Dst forecasting model works. A concise and convnient Key Points model of the polar region is also introduced to space weather. In summary, this paper contains some new quantitative and physical description of the space currents with special focus on the ring current. Whatever we do is just to gain a better understanding of the natural world, particularly the space environment around Earth through analytical deduction, algorithm designing and physical analysis, to quantitative interpretation. Applications of theoretical physics in conjunction with data analysis help us to understand the basic physical process govering the universe.
Resumo:
The optical interference method is a promising technique for measuring temperature, density, and concentration in fluids. The non-intrusive and non-invasive nature of its optical techniques to the measured section are its most outstanding features. However, the adverse experiment environment, especially regarding shaking and vibrating, greatly restricts the application of the interferometer. In the present work, an optical diagnostic system consisting of a Mach-Zehnder interferometer (named after physicists Ludwig Mach) and an image processor has been developed that increases the measuring sensitivity compared to conventional experimental methods in fluid mechanics. An image processor has also been developed for obtaining quantitative results by using Fourier transformation. The present facility has been used in observing and measuring the mass transfer process of a water droplet in EAFP protein solution under microgravity condition provided by the satellite Shi Jian No. 8.
Resumo:
A new electrocatalysis of carbon materials for oxygen reduction reaction (ORR) on Pt/C catalysts was discovered. It was found that there exist two kinds of electroactive sites on these supports of carbon materials, which can effectively electrocatalyze the reduction of peroxide intermediated from oxygen reduction on Pt, as this provides continuous driving force to move the equilibrium toward the production of peroxide from ORR.