3 resultados para eremophilenolide
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Isolation, characterization and crystal structure of natural eremophilenolide from Ligularia sagitta
Resumo:
A new eremophilenolide 1beta, 10beta-epoxy-6beta-acetoxy-3beta-angeloyloxy-8beta-hydrox y-eremophil-7(11)-en-8, 12alpha-olide (1), together with liguhodgsonal (2), esculetin (3) and beta-sitosterol (4), was isolated from the aerial parts of Ligularia sagitta. The structure of the new constituent (1) was elucidated by spectroscopic methods and confirmed by single-crystal X-ray diffraction.
Resumo:
本论文由四章组成。第一、二和三章分别报道了双花千里光、川芎和宽叶羌活的化学成分研究。从三种药用植物中共分离和鉴定了40 个化学成分,其中8个为新化合物。第四章概述了藳本属植物及日本川芎的化学成分研究进展。 第一章包括三个部分。第一部分报道双花千里光(Senecio dianthus Franch.)地上部分乙醇提取物的化学成分。采用正、反相硅胶柱层析等各种分离方法,从中共分离出8 个艾里莫酚型倍半萜内酯,其中5 个是新化合物,并且有1 个为首次发现的连接了含氮原子取代基的艾里莫酚型倍半萜内酯。它们的结构经MS、IR、NMR及X-单晶衍射等解析方法确定为2b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (1)、6b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (2)、2b-angeloyloxy-8b,10b- dihydroxyeremophil-7(11)-en-8a,12-olide (3)、2b-angeloyloxy-8a-hydroxyeremophil-7(11),9(10)-dien-8b,12-olide (4)和8b-amino-10b- hydroxyleremophil-7(11)-en-8a,12-olide (5)。这8 个倍半萜内酯经体外生物活性测试表明均具有通过抑制巨噬细胞增殖抵制破骨细胞增生的活性。第二部分对艾里莫酚型倍半萜内酯的质谱裂解规律进行了初步探讨。第三部分报道双花千里光茎、和叶花的挥发油成分分析。采用传统水蒸气蒸馏法分别提取了双花千里光茎、叶和花的挥发油,用气相色谱-质谱联用(GC-MS)技术分别分离鉴定了其化学成分,从茎、叶和花挥发油中各分离和鉴定出70、80 和73 种化学成分,分别占挥发油总量的91.2%、85.7%及93.4%。 第二章包括两个部分。第一部分报道川芎(Ligusticum chuanxiong Hort.)根茎乙醇提取物的化学成分。通过正、反相硅胶柱层析等分离纯化和MS、NMR及X-单晶衍射等解析方法,共分离鉴定了21 个化合物,结构类型分属于苯酞、二聚苯酞、香豆素和脂肪酸类。其中2 个为结构比较新颖的二聚苯酞类化合物:chuanxiongnolide A (19)和chuanxiongnolide B (20),化合物19 的结构经X-单晶衍射得到确证。第二部分报道川芎挥发油的化学成分。采用不同的提取方法(溶剂萃取法、水蒸气蒸馏法、CO2 超临界流体萃取法)提取川芎挥发油,同时采集不同产地(四川彭县、四川郫县、云南鹤庆)及不同品质(川芎、奶芎、苓子)的川芎产品,利用GC-MS 技术分离鉴定其挥发油的化学成分,计算各成分的相对含量,并对比分析其中的异同。 第三章报道宽叶羌活(Notopterygium forbesii Boiss.)根茎化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化和MS、NMR 等解析方法,共分离鉴定了13 个化合物,结构类型分属于香豆素、二氢异香豆素、甾体和羧酸类。其中1 个新二氢异香豆素类成分鉴定为6-methoxy-hydrangenol (37)。 第四章概述了藳本属植物及日本川芎化学成分的研究进展。 This dissertation consisted of four chapters. The former three chaptersrespectively elaborated the phytochemical investigation of three herbal medicines:Senecio dianthus Franch., Ligusticum chuanxiong Hort. and Notopterygium forbesiiBoiss.. Forty compounds, including eight new ones, were isolated and identified byspectral and chemical evidence. The fourth chapter elaborated the study progress ofchemical constituents of Ligusticum genus and Cnidium offcinale. The first chapter consisted of three parts. The first part is about the chemicalconstituents of ethanol extraction and essential oils from the aerial parts of S. dianthu.Eight eremophilenolides were isolated and identified. Among them, five ones are newcompounds and one of them is a novel eremophilenolide attched with an amino group.The structures of the new compounds were identified as 2b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (1),6b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (2),2b-angeloyloxy-8b,10b-dihydroxyeremophil-7(11)-en-8a,12-olide (3),2b-angeloyloxy-8a-hydroxyeremophil-7(11),9(10)-dien-8b,12-olide (4) and8b-amino-10b-hydroxyeremophil-7(11)-en-8a,12-olide (5) by spectral evidence andX-ray crystallography analysis. All the compounds were evaluated for theiranti-osteoclstogenesis activity using a proliferation inhibit assay with microphagecells. The second part elementarily discussed the characteristic fragmentation oferemophilenolides isolated from S. dianthus in ESI-MS.The latter part is about thechemical constituents of essential oil extracted from stems, leaves and flowers of S.dianthus with steam distillation. By the GC-MS analysis, 70, 80 and 73 compoundswere respectively isolated and identified which accounted for more than 91.2%, 85.7% and 93.4% of total essential oil. The second chapter, including two parts, is about the the chemical constituents ofethanol extraction and essential oils from rhizomes of L. chuanxion. In the first part, twenty-one compounds were isolated and iedntified. Two ones are novel dimericphthalides and the structures were suggested as chuanxiongnolide A (19) andchuanxiongnolide B (20) by spectral evidence and confirmed by X-raycrystallography analysis. In the second part, the samples were collected from differentextract techniques (solvent extraction, steam distillation and supercriticalfluid extraction), different habitats (Peng and Pi counties, Sichuan province; Heqing,Yunnan province) and different qualities (Chuanxiong, Naixiong and Lingzi). Thechemical constituents of essential oil from L. chuanxiong were analyzed by GC-MS and were compared each other. The third chapter is about the chemical constituents of rhizomas of N. forbesii,which belongs to a endemic genus of China. Thirteen compounds were isolated andidentified. One of them is a new dihydroisocoumarin and the structure was identifiedas 6-methoxy-hydrangenol (37) by spectral evidence. The fourth chapter is a review on study progress of chemical constituents ofLigusticum species and Cnidium offcinale.
Resumo:
本论文由三章组成。第一、二章分别报道钩藤、蹄叶橐吾的化学成分研究工作。从两种药用植物中共分离和鉴定了37 个化合物,其中有1 组6 个新的骨架相似的鞘糖脂类同系物及5 个新的倍半萜类化合物。第三章概述了艾里莫芬烷内酯类化合物的研究进展。 第一章报道钩藤(Uncaria rhynchophylla)带钩茎枝乙醇提取物的化学成分。采用正、反相硅胶柱层析等分离方法,运用NMR、MS 等波谱技术共分离鉴定得到22 个化合物,分属于五环三萜类化合物、鞘糖脂类化合物等,其中有1 组6个新的鞘糖脂类化合物同系物,另外有7 个化合物首次从该植物中分离得到。 第二章报道蹄叶橐吾(Ligularia fischeri)根部乙醇提取物化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化和MS、NMR 等波谱解析,共分离鉴定得到18 个化合物,其中5 个是新化合物。它们的结构分别确定为3β-acetyl-6β, 8α, 10β-trihydroxyeremophila-7(11)-en-8, 12-olide (23), 3β-acetyl-8β,10β-dihydroxy-6β-(2-methylbutyryloxy)-eremophilenolide (24), 3β-acetyl-6β, 10β-dihydroxyeremophila-7(11), 8(9)-dien-8, 12-olide (25), 3β-acetyl-6β, 10β-dihydroxyeremophila- 7(11), 8(9)-dien-8, 12-olide (26), (3aR, 4R, 5S, 7aS)-2-acetyl-7ahydroxy-3a, 4, 5, 6, 7, 7a-hexahydro-1H-inden-5-yl acetate (27)。这5 个化合物经体外生物活性测试,结果表明化合物23 具有抑制酪氨酸磷酸酯酶的活性, 其IC50 值为1.30 μg/ml。 第三章概述了近二十年来艾里莫芬烷内酯类化合物的研究进展,包括其结构及药理活性两个方面,列举了从23 种植物中分到的114 个艾里莫芬烷内酯类化合物,同时也对其主要生物活性进行了总结。 This dissertation consists of three chapters. The first and second chapters elaborate the phytochemical investigation of Uncaria rhynchophylla and Ligularia fischeri. Thirty-seven compounds, including six new ones, were isolated and identified by spectroscopic methods and X-ray diffraction experiments. The third chapter is a review on the study progress of Eremophilanolides. The first chapter focus on the isolation and identification of chemical constituents from Uncaria rhynchophylla. Twenty-two compounds were isolated from the roots of U. rhynchophylla by repeat column chromatography over normal and reversed phase silica gel. Those compounds mainly belonged pentacyclic triterpenoids and sphingolipids. Among them, a series homologues of six sphingolipids were new compounds and seven compounds were firstly reported in this plant. The second chapter is about the phytochemical investigation of L. fischeri. Eighteen compounds were isolated and identified. Among them, four new erem-ophilanolides and a new dinoreremophilane derivative were characterized as 3β-acetyl-6β, 8α, 10β-trihydroxyeremophila-7(11)-en-8, 12-olide (23), 3β-acetyl-8β, 10β-dihydroxy-6β-(2-methylbutyryloxy)-eremophilenolide (24), 3β-acetyl-6β, 10β-dihydroxyeremophila-7(11), 8(9)-dien-8,12-olide (25), 3β-acetyl-6β, 10α-dihydroxyeremophila- 7(11), 8(9)-dien-8,12-olide (26), (3aR,4R,5S,7aS)-2-acetyl-7a-hydroxy-3a, 4, 5, 6,7, 7a-hexahydro-1H-inden-5-yl acetate (27) by spectroscopic analysis and confirmed by X-ray crystallography analysis. It was revealed that compound 23 has the ability to inhabit the PTP1B in vivo. And its IC50 is 1.30 μg/ml. The third part is a review on the study progress of Eremophilanolides.