10 resultados para endoplasmic reticulum aminopeptidase 1
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
SNARE蛋白家族是所有真核细胞胞吐及分泌作用中的关键因子,由其介导的运输囊泡膜与靶膜的锚靠、融合为胞内蛋白的运出提供了一条重要途径。体外试验表明,Syntaxin6-Syntaxin7-Vti1b,SNAP-23-Syntaxin4等SNARE核心蛋白之间精确的相互作用是哺乳动物巨噬细胞肿瘤坏死因子α (TNF-α)运输和分泌的必备条件,在机体非特异性免疫应答反应过程中起重要作用。 本研究受上述启示,旨在揭示SNARE蛋白在海洋鱼类免疫细胞内重要细胞因子白细胞介素1β (IL-1β)的分泌过程中的作用。参照Percoll密度梯度离心技术,从鲈鱼头肾组织分离纯化巨噬细胞进行稳定培养;利用RT-PCR方法克隆出鲈鱼t-SNARE蛋白SNAP-23和Syntaxin3的部分cDNA序列,再结合先前克隆的VAMP2和已知的鲈鱼IL-1β,TNF-α和IL-8的基因序列,设计特异性引物。利用Real-time PCR技术在mRNA水平上精确测定鲈鱼巨噬细胞中上述6种基因在革兰氏阴性菌脂多糖(LPS)分子刺激下的表达变化,发现SNAP-23基因与三种细胞因子基因的表达正相关;通过免疫印迹检测SNAP-23蛋白表达变化,利用酶联免疫吸附试验(ELISA)检测IL-1β的分泌水平,在蛋白水平上验证了SNAP-23表达与IL-1β分泌的正相关性;利用5`RACE和3`RACE技术克隆出鲈鱼SNAP-23全长基因,结合定点突变策略和靶向PCR克隆手段,构建鲈鱼SNAP-23野生型融合质粒pEGFP-SNAP-23wt,Cys缺失突变融合质粒pEGFP-SNAP-23ΔCys和模拟E型肉毒神经毒素(BoNT/E)切割突变融合质粒pEGFP-SNAP-23ΔBoNT/E,以及鲈鱼IL-1β野生型融合表达质粒IL-1β-pEGFP和IL-1β-pEYFP。所有融合蛋白均在鲈鱼巨噬细胞内成功表达,结合ELISA实验结果发现,SNAP-23野生型的表达对IL-1β的分泌有促进作用,而Cys缺失突变体的表达则抑制IL-1β向胞外分泌。首次证实了鱼类巨噬细胞内SNAP-23蛋白在IL-1β分泌过程中的重要作用。此外通过与GFP共表达,定位了IL-1β分子在巨噬细胞内的分布,发现新合成的IL-1β分子很可能像TNFα一样经“内质网-胞质-伪足-胞外” 的分泌路径运出胞外。
Resumo:
The oligohaline cyanobacterium Aphanizomenon flos-aquae (L.) Ralfs (A. flos-aquae) has been reported in several countries to produce paralytic shellfish poisons (PSPs) or protracted toxic effects. In the past years, A. flos-aquae blooms have occurred annually in the eutrophic Lake Dianchi (300 km(2) in area, located in southwestern China). Material from natural blooms dominated by A. flosaquae was collected and lyophilized. Acute toxicity testing was performed by mouse bioassay using extracts from the lyophilized material. Clear symptoms of PSPs, intoxications were observed. To confirm the production of PSPs, a strain of A. flos-aquae (DC-1) was isolated and maintained in culture. Histopathological effects were studied by examining the organ damages using transmission electron microscopy (TEM). Slight hepatocytic damage with swollen mitochondria was found. The ultrastructural pulmonary lesions were characterized by distortied nuclei and indenting of karyotheca, together with degeneration and tumefaction of mitochondria and endoplasmic reticulum. Control animals injected with acetic acid did not exhibit histopathological damage in any organ. Toxic effects of cultured algal cells on enzymatic systems in the mouse were studied using sublethal doses of extracts. Significant glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) increases, together with decrease of the glutathione (GSH) level, were measured. These results indicated a potential role of PSPs intoxicating and metabolizing in the test animals. HPLC-FLD and LC/MS analysis of extracts from cultured material demonstrated the PSP toxins produced by A. flos-aquae bloom. To the best of our knowledge, this is the first study reporting chemically and toxicologically confirmed PSP toxins related to A. flosaquae in China. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The sexual ratio of Gobiocypris rarus exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 17 beta -estradiol from embryo to sexually mature revealed feminization and overdevelopment of connective tissue in male fish gonad in 2-30 pg/L TCDD concentration range. Daphnia magna was not sensitive to the high dose of TCDD (0.1-1000 ng/ml), but the reproduction of D. magna treated with TCDD decreased after the 8th day. 7-Ethoxyresorufin-O-deethylase (EROD) activities in newly fertilized eggs of G. rarus exposed to TCDD dosage groups (1000-100,000 pg/L) were significantly induced and increased with TCDD concentrations at the early life stage, while no difference was found between low TCDD dosage groups (<100 pg/L), but a good relationship between the EROD activity and the TCDD concentration was observed during a long-term developmental stage. There was a pericardial edema formed in a 2-week yolk-sac at the concentration of 1000 pg/L TCDD. But in the exposure group (2 pg/L TCDD for 120 days), the cell nuclei of hepatocytes was far from the center and packed toward the cell membrane; the cristae of most mitochondria in the cell dropped and collapsed; the rough endoplasmic reticulum broke into fragments; and numerous lipid droplets formed in the cell. (C) 2001 Academic Press.
Resumo:
GRP78 (78 kDa glucose-regulated protein), also known as BiP (immunoglobulin heavy-chain-binding protein), is an essential regulator of endoplasmic reticulum (ER) homeostasis because of its multiple functions in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. In this report, we cloned the full length cDNA of GRP78 (FcGRP78) from Chinese shrimp Fenneropenaeus chinensis. This cDNA revealed a 2,325 bp with 1,968 bp open reading frame encoding 655 amino acids. This is the first reported GRP78 gene in Crustacea. The deduced amino acid sequence of FcGRP78 shared high identity with previously reported insect GRP78s: 86, 87 and 85% identity with GRP78s of Drosophila melanogaster, Aedes aegypti and Bombyx mori, respectively. Northern blot analysis shows that FcGRP78 is ubiquitously expressed in tissues of shrimp. Heat shock at 35A degrees C significantly enhanced the expression of FcGRP78 at the first hour, reached the maximum at 4 h post heat shock, dropped after that and resumed to the normal level until 48 h of post recovery at 25A degrees C. Additionally, differential expression of FcGRP78 was detected in haemocytes, hepatopancreas and lymphoid organ when shrimp were challenged by white spot syndrome virus (WSSV). We inferred that FcGRP78 may play important roles in chaperoning, protein folding and immune function of shrimp.
Resumo:
The ultrastructure of the bloodstream forms of Trypanosoma pseudobagri from its natural host, yellow catfish (Pseudobagrus fulvidraco), a freshwater fish, is described in the present work. The pellicle, consisting of a unit membrane with a superimposed surface coat, the structure and attachment of the flagellum and the subpellicular microtubules show the usual structural and organizational features. Cell organelles and cytoplasmic inclusions such as kinetoplast, mitochondria, nucleus and vacuoles, which occur in trypanosomidae, are observed and described in detail. The ultrastructure of T. pseudobagri has been compared with that of bloodstream forms of other species and culture forms of fish trypanosomes, and similarities and divergences are discussed. The Golgi-complex and endoplasmic reticulum could not be observed and need further investigation.
Resumo:
Cytological and biochemical alterations of crucial carp (Carassius auratus) hepatocytes were characterized after exposure to sediments from a lake contaminated with dioxins and other industrial chemicals. Carp were exposed in 20 L water containing 25, 50, or 100 g of contaminated sediment for 2 and 4 weeks. Ultrastructural changes in the liver were characterized by severe enlargement of hepatocytes. Alterations in the cell. included formation of condensed and irregular cell nucleus, polynuclei, dispersed heterochromatin, enlargement of the nucleolus, and degeneration of the nucleus. Mitochondrial numbers were reduced and cristae were deformed. Myelin figures and lysosomes were increased, and sometimes cell organelles and cell matrix were totally lost after 4 weeks of exposure. The ultrastructural alterations were correlated with exposure time and sediment concentrations. Hepatosometic index was significantly increased in experimental groups at 2 and 4 weeks as compared with the control group. EROD enzyme activities were strongly induced in liver. A trend from rough endoplasmic reticulum (RER) to SER was observed. Our results suggest that the dioxin-like compounds bound by sediment were bioavailable to C. auratus and cause sublethal effects.
Resumo:
In the present study, the mechanism of intercellular calcium wave propagation in bone cell networks was identified. By using micro-contact printing and self-assembled monolayer technologies, two types of in vitro bone cell networks were constructed: open-ended linear chains and looped hexagonal networks with precisely controlled intercellular distances. Intracellular calcium responses of the cells were recorded and analysed when a single cell in the network was mechanically stimulated by nano-indentation. The looped cell network was shown to be more efficient than the linear pattern in transferring calcium signals from cell to cell. This phenomenon was further examined by pathway-inhibition studies. Intercellular calcium wave propagation was significantly impeded when extracellular adenosine triphosphate (ATP) in the medium was hydrolysed. Chemical uncoupling of gap junctions, however, did not significantly decrease the transferred distance of the calcium wave in the cell networks. Thus, it is extracellular ATP diffusion, rather than molecular transport through gap junctions, that dominantly mediates the transmission of mechanically elicited intercellular calcium waves in bone cells. The inhibition studies also demonstrated that the mechanical stimulation-induced calcium responses required extracellular calcium influx, whereas the ATP-elicited calcium wave relied on calcium release from the calcium store of the endoplasmic reticulum.
Resumo:
In this paper, we report a novel approach using peptide CALNN and its derivative CALNNGGRRRRRRRR (CALNNR(8)) to functionalize gold nanoparticles for intracellular component targeting. The translocation is effected by the nanoparticle diameter and CALNNR8 surface coverage. The intracellular distributions of the complexes are change from the cellular nucleus to the endoplasmic reticulum by increasing the density of CALNNR8 at a constant nanoparticle diameter. Additionally, increasing the nanoparticle diameter at a constant density of CALNNR8 leads to less cellular internalization.
Resumo:
Calreticulin (CRT), as an endoplasmic reticulum luminal resident protein, plays important roles in Ca2+ homeostasis and molecular chaperoning. CRT on the surface of the cell can modulate cell adhesion, phagocytosis and integrin-dependent Ca2+ signaling. The full length cDNA of calreticulin (FcCRT) was cloned from Chinese shrimp Fenneropenaeus chinensis. It consists of 1672 by with an open reading frame of 1221 bp, encoding 406 amino acids. This is the first reported cDNA sequence of calreticulin in Crustacea. The deduced amino acid sequence of FcCRT showed high identity with those of Bombyx mori (88%), Drosophila melanogaster (83%), Mus musculus (82%) and Homo sapiens (82%). Highest expression of FcCRT was detected in ovary by Northern blot and in situ hybridization. Different mRNA levels of FcCRT were detected at various molting stages. Expression of FcCRT was induced significantly after 3 h of heat shock treatment, reached the maximum at 4 h and dropped after that. Differential expression profiles of FcCRT were observed in hepatopancreas and haemocytes when shrimp were challenged by white spot syndrome virus (WSSV). From the above results, we inferred that FcCRT might play important roles in Ca2+ homeostasis, chaperoning and immune function in shrimp. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
模拟高原低氧条件研究高原鼠兔肝细胞内质网(Endoplasmic reticulum , ER ) 和心肌肌浆网(Sarcoplasmic reticulum , SR) 钙泵功能变化。实验设对照组(海拔2 300 m ) 和两个低氧实验组(模拟海拔5 000m 和7 000m )。24 h 急性低氧时, 海拔5 000 m 组高原鼠兔ER 的Ca2+ 泵活性无变化, 海拔7 000 m 组高原鼠兔ER Ca2+泵活性下降29102%。7 d 亚急性低氧时高原鼠兔SR 的Ca2+泵活性无显著变化。高原鼠兔ER 的Ca2+泵活性在海拔5 000 m 组和7 000 m 组分别升高32.50% 和33.33%。25 d 慢性低氧时高原鼠兔ER , SR 的Ca2+ 泵活性均无显著变化.表明: 急性低氧对Ca2+泵功能有抑制作用, 低氧7 d 后抑制缓解, 至25 d 低氧时趋于恢复。