203 resultados para electronic documents
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We present an entanglement purification scheme for the mixed entangled states of electrons with the aid of charge detections. Our scheme adopts the electronic polarizing beam splitters rather than the controlled-NOT (CNOT) operations, but the total successful probability of our scheme can reach the quantity as large as that of the the CNOT-operation-based protocol and twice as large as that of linear-optics-based protocol for the purification of photonic entangled states. Thus our scheme can achieve a high successful prabability without the usage of CNOT operations.
Resumo:
Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.
Resumo:
A new pump and probe experimental system was developed, the pump pulse duration of which is stretched and is much longer than that of the probe pulse. Using this system, time-resolved electronic excitation processes and damage mechanisms in CaF2 crystals were studied. The measured reflectivity of the probe pulse begins to increase at the peak of the pump pulse and increases rapidly in the latter half of the pump pulse, when the pump pulse duration is stretched to 580fs. Our experimental results indicate that both multiphoton ionization and impact ionization play important roles in the generation of conduction band electrons, at least they do so when the pump pulse durations are equal to or longer than 580fs.
Resumo:
Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers. (c) 2005 Elsevier B.V. All tights reserved.
Resumo:
The electronic structures and absorption spectra for the perfect PbMoO4 crystal and the crystal containing lead vacancy V-Pb(2-) with lattice structure optimized are calculated using density functional theory code CASTEP. The calculated absorption spectra of the PbMoO4 crystal containing V-Pb(2-) exhibit three absorption bands peaking at 2.0 eV (620 nm), 3.0 eV (413 run) and 3.3 eV (375 nm), which are in good agreement with experimental values. The theory predicts that the 390 nm, 430 nm and 580 run absorption bands are related to the existence of V-Pb(2-) in the PbMoO4 crystal.
Resumo:
National Nature Science Foundation of China (Grant No. 60607015)
Resumo:
Hexabromocyclododecanes (HBCDs) are now emerging ubiquitous contaminants due to their wide usage, persistence and toxicities. To investigate the bioaccumulative characteristics of HBCDs, sediments, Winkle (Littorina littorea), crucian carp (Carassius carassius) and loach (Misgurnus anguillicaudatus) were collected from two streams near an E-waste dismantling site in China. and HBCD exposure test was then conducted on Chinese rare minnow. The concentration of HBCDs was 14 ng g(-1) dry weight in sediments, 186. 377 and 1791 ng g(-1) lipid weight in winkle, crucian carp and loach, respectively. gamma-HBCD was found to be the dominant diastereoisomer in the sediments (63% of total HBCDs). However, alpha-HBCD was selectively accumulated in the biotic samples and contributed to 77%, 63% and 63% of total HBCDs in winkle, crucian carp and loach, respectively. Moreover, an enrichment of (-)-enantiomers of alpha- and gamma-HBCD were found in the winkle. The reverse results were observed in the crucian carp and loach. Similar observations of diastereoisomeric and enantiomeric composition were obtained in Chinese rare minnow with those found in the crucian carp and loach. These results indicate that the freshwater species from the streams are contaminated by HBCDs. alpha-HBCD can be selectively accumulated in organisms and the accumulative characteristics are enantioselective among species. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
To investigate the occupational exposure levels to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), indoor dust (n = 3) in workshops and hair samples from male workers (n = 64) were collected at two electrical and electronic equipment waste (E-waste) dismantling factories located in the LQ area in east China in July 11-13, 2006. Pre- and postworkshift urines (64 of each) were also collected from the workers to study oxidative damage to DNA using 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker. The concentrations of PCDD/Fs, PCDD/F-WHO-TEQs, PBDEs, PCBs and PCB-WHO-TEQs were (50.0 +/- 8.1) x 10(3), 724.1 +/- 249.6, (27.5 +/- 5.8) x 10(6), (1.6 +/- 0.4) x 10(9), (26.2 +/- 3.0) x 10(3) pg/g dry weight (dw) in dust, and (2.6 +/- 0.6) x 10(3), 42.4 +/- 9.3, (870.8 +/- 205.4) x 10(3), (1.6 +/- 0.2) x 10(6), 41.5 +/- 5.5 pg/g dw in hair, respectively. The homologue and congener profiles in the samples demonstrated that high concentrations of PCDD/Fs, PBDEs, and PCBs were originated from open burning of E-waste. The 8-OHdG levels were detected at 6.40 +/- 1.64 mu mol/mol creatinine in preworkshift urines. However, the levels significantly increased to 24.55 +/- 5.96 mu mol/mol creatinine in postworkshift urines (p < 0.05). Then, it is concluded that there is a high cancer risk originated from oxidative stress indicated by the elevated 8-OHdG levels in the E-waste dismantling workers exposed to high concentrations of PCDD/Fs, PBDEs, and PCBs.
Resumo:
This study is one of the very few investigating the dioxin body burden of a group of child-bearing-aged women at an electronic waste (e-waste) recycling site (Taizhou, Zhejiang Province) (24 +/- 2.83 years of age, 40% were primiparae) and a reference site (Lin'an city, Zhejiang Province, about 245 km away from Taizhou) (24 +/- 2.35 years of age, 100% were primiparae) in China. Five sets of samples (each set consisted of human milk, placenta, and hair) were collected from each site. Body burdens of people from the e-waste processing site (human milk, 21.02 +/- 13.81 pg WHO-TEQ(1998/g) fat (World Health Organization toxic equivalency 1998); placenta, 31.15 +/- 15.67 pg WHO-TEQ(1998/g) fat; hair, 33.82 +/- 17.74 pg WHO-TEQ(1998/g) dry wt) showed significantly higher levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas (PCDD/Fs) than those from the reference site (human milk, 9.35 +/- 7.39 pg WHO-TEQ(1998/g) fat, placenta, 11.91 +/- 7.05 pg WHO-TEQ(1998/g) fat; hair, 5.59 +/- 4.36 pg WHO-TEQ(1998/g) dry wt) and were comparatively higher than other studies. The difference between the two sites was due to e-waste recycling operations, for example, open burning, which led to high background levels. Moreover, mothers from the e-waste recycling site consumed more foods of animal origin. The estimated daily intake of PCDD/Fs within 6 months by breast-fed infants from the e-waste processing site was 2 times higher than that from the reference site. Both values exceeded the WHO tolerable daily intake for adults by at least 25 and 11 times, respectively. Our results implicated that e-waste recycling operations cause prominent PCDD/F levels in the environment and in humans. The elevated body burden may have health implications for the next generation.
Resumo:
Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r(2) > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
First-principles calculations; ZnO nanofilms; Electronic properties; Quantum effects; NANOBELTS; NANORINGS; WURTZITE; ENERGY Abstract: Using first-principles density-functional calculations, we have studied the structural and electronic properties Of Ultrathin ZnO {0001} nanofilms. The structural parameters, the charge densities, band structures and density of states have been investigated. The results show that there are remarkable charge transfers from Zn to O atoms in the ZOO nanofilms. All the ZOO nanofilms exhibit direct wide band gaps compared with bulk counterpart, and the gap decreases with increased thickness of the nanofilms. The decreased band gap is associated with the weaker ionic bonding within layers and the less localization of electrons in thicker films. A staircase-like density of states occurs at the bottom of conduction band, indicating the two-dimensional quantum effects in ZnO nanofilms.
Resumo:
We perform first-principles calculations of the structural, electronic, mechanical, and thermodynamic properties of thorium hydrides (ThH2 and Th4H15) based on the density functional theory with generalized gradient approximation. The equilibrium geometries, the total and partial densities of states, charge density, elastic constants, elastic moduli, Poisson's ratio, and phonon dispersion curves for these materials are systematically investigated and analyzed in comparison with experiments and previous calculations. These results show that our calculated equilibrium structural parameters are well consistent with experiments. The Th-H bonds in all thorium hydrides exhibit weak covalent character, but the ionic properties for ThH2 and Th4H15 are different due to their different hydrogen concentration. It is found that while in ThH2 about 1.5 electrons transfer from each Th atom to H, in Th4H15 the charge transfer from each Th atom is around 2.1 electrons. Our calculated phonon spectrum for the stable body-centered tetragonal phase of ThH2 accords well with experiments. In addition we show that ThH2 in the fluorite phase is mechanically and dynamically unstable.
Resumo:
The configurations, stability, and electronic structure of AuSin (n = 1-16) clusters have been investigated within the framework of the density functional theory at the B3PW91/LanL2DZ and PW91/DNP levels. The results show that the Au atom begins to occupy the interior site for cages as small as Si-11 and for Si-12 the Au atom completely falls into the interior site forming Au@Si-12 cage. A relatively large embedding energy and small HOMO-LUMO gap are also found for this Au@Si-12 structure indicating enhanced chemical activity and good electronic transfer properties. All these make Au@Si-12 attractive for cluster-assembled materials.