109 resultados para electron impact ionization
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We have performed an experiment on near threshold double ionization of helium by 106 eV electron impact with an improved reaction microscope. In this experiment the momenta of three particles after ionization were measured, and the information on correlation of emitted electrons was obtained. Detailed descriptions of the experimental setup and the methods of reconstruction of electron momentum were given. We focused on the analysis of momentum and energy distributions and the angular correlation of the emitted electrons. The experimental results were compared with Wannier's prediction, and it was found that the experimental results showed some characteristic features predicted by Wannier theory.
Resumo:
The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
Cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to the excited states 1s2s(2), 1s2p(2), 1s2snp (n = 2-5), 1s2sns (n = 3-5), 1s2pns (n = 3-5), and 1s2pnp (n = 3-5) are calculated by using a full relativistic distorted wave method. The latest experimental electron energy loss spectra for inner-shell electron excitations of lithium at a given incident electron energy of 2500 eV [Chin. Phys. Lett. 25 (2008) 3649] have been reproduced by the present theoretical investigation excellently. At the same time, the structures of electron energy loss spectra of lithium at low incident electron energy are also predicted theoretically, it is found that the electron energy loss spectra in the energy region of 55-57 eV show two-peak structures.
Resumo:
The electron impact excitation cross sections from the lowest metastable state 5p(5)6sJ = 2 to the six lowest excited states of the 5p(5)6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.
Resumo:
The electron impact excitation (EIE) cross sections from the ground state to all of the 2s(2)2p(5)3l and 2s2p(6)3l(l=s, p, d) states along the Ne-like isoelectronic sequence of ions (Z = 50-57) have been calculated by using the multiconfiguration Dirac-Fock package GRASP92 and the fully relativistic distorted-wave program REIE06. In the calculations, the relativistic effects and electron correlation effects are considered systematically. Based on those calculations, the EIE cross sections along the Ne-like isoelectronic sequence of ions for different incident electron energies are discussed, and some important conclusions are drawn. We also study the influence of the correlation effects on the values of the 3C/3D line-intensity ratio [3C: (2p(1/2)3d(3/2))(1) -> 2s(2)2p(6) S-1(0), 3D: (2p(3/2)3d(5/2))(1) -> 2s(2)2p(6) S-1(0)] along the Ne-like sequence. A comparison is made between the present results and previous theoretical calculations and experimental results for the EIE cross sections in Ba-46 (+) ions, and a good agreement is obtained.
Resumo:
This paper calculates the electron impact excitation rate coefficients from the ground term 2s(2)2p(2) P-3 to the excited terms of the 2s(2)2p(2), 2s2p(3), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of N II. In the calculations, rnulticonfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
Resumo:
The differential and integral cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to excited states 1s(2)2p, 1s(2)3l (l = s,p,d) and 1s(2)4l (l = s,p,d,f) at incident energies ranging from 5 eV to 25 eV are calculated by using a full relativistic distorted wave method. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbitals are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. A part of the cross sections are compared with the available experimental data and with the previous theoretical values. It is found that, for the integral cross sections, the present calculations are in good agreement with the time-independent distorted wave method calculation, for differential cross sections, our results agree with the experimental data very well.
Resumo:
Procedures that allow the realization of resonance electron capture (REC) mode on a commercial triple-quadrupole mass spectrometer, after some simple modifications, are described, REC mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments were performed and spectra for some compounds were recorded. In particular, the charge-remote fragmentation (CRF) spectra of [M - H](-) ions of docosanoic and docosenoic acids under low-energy collisionally activated dissociation (CAD) conditions were obtained, and showed that there were no significant differences for [M - H](-) ions produced at different resonances (i,e. for [M - H](-) ions with different structures). This observation was explained on the basis of results obtained from deuterium-labeled fatty acids, which showed that different CRF ions (but with the same m/z value in the absence of labels) could be produced by different mechanisms, and all of them were obviously realized under CAD conditions that made spectra practically indistinguishable. The other example, which compared the REC-MS/MS spectrum of [M - H](-) ions and EI-MS/MS spectrum of M+. ions of daidzein, demonstrated the potential of the REC-MS/MS technique for more complex structure elucidation. Copyright (C) 2000 John Wiley & Sons, Ltd.
Laser induced photoelectron impact ionization in time-of-flight mass spectrometer 飞行时间质谱中光发射电子碰撞电离过程
Resumo:
The fragmentations of three bifunctional phenylether compounds including 2-(2, 6-dichloro)phenoxyl propionitrile, N-hydroxyl-4-butoxyl phenylacetyl amine(bufexamc) and 2-(1-methylethoxyl) phenol methylcarbamate (Propoxur) under electron impact ionization were reported, Metastable ion(MI) and collision-induced dissociation(CID) at a low energy have been used to study the fragmentation pathways from molecular ions. Apart from the simple bond cleavages, and the unimolecular dissociations via ion/neutral complex intermediate as a competitive mechanism were demonstrated, Moreover, the intramolecular hydrogen transfer and double hydrogen transfers in the fragmentations of these compounds were discussed in detail.
Resumo:
The Coulomb explosion of ammonia clusters induced by nanosecond laser at 532 not with an intensity of similar to 10(12) Wcm(-2) has been studied by time of flight mass spectrometry. The dominant multiply charged ions are N3+ and N2+ with kinetic energies of 110 and 50 eV respectively. The electrons generated from the multiphoton ionization are heated through inverse bremsstrahlung by the laser field when colliding with neutral or ionic particles. When their energies surpass the corresponding ionization potentials of the molecules or ions, the subsequent electron impact ionization may take place thus resulting in multi-charged nitrogen ions. Covariance analysis is made to study the possible pathways of the Coulomb explosion.
Resumo:
The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.