176 resultados para electrochemical devices

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanowires functionalized by special molecules can be used to as the candidates for biological application in many areas. In this paper, nickel nanowires, which were fabricated by electrochemical deposition and functionalized by biotinylated peptide, were applied to constructing the hybrid device powered by F-1-ATPase motors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers. (c) 2005 Elsevier B.V. All tights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel PPV derivatives (PCA8-PV and PCA8-MEHPV) containing N-phenyl-carbazole units on the back-bone were successfully synthesized by the Wittig polycondensation of 3,6-bisformyl-N-(4-octyloxy-phenyl)carbazole with the corresponding tributyl phosphonium salts in good yields. The newly formed and dominant trans vinylene double bonds were confirmed by FT-IR and NMR spectroscopy. The polymers (with (M) over bar (w) of 6289 for PCA8-PV and 7387 for PCA8-MEHPV) were soluble in common organic solvents and displayed high thermal stability (T(g)s are 110.7 degreesC for PCA8-PV and 92.2 degreesC for PCA8-MEHPV, respectively) because of the incorporation of the N-phenyl-carbazole units. Cyclic voltammetry investigations (onsets: 0.8 V for PCA8-PV and 0.7 V for PCA8-MEHPV) suggested that the polymers possess enhanced hole injection/transport properties, which can be also attributed to the N-phenyl-carbazole units on the backbone. Both the single-layer and the double-layer light-emitting diodes (LEDs) that used the polymers as the active layer emitted a greenish-blue or bluish-green light (the maximum emissions located 494 nm for PCA8-PV and 507 nm for PCA8-MEHPV, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the goal to provide organometallic triplet emitters with good hole-injection/hole-transporting properties, highly amorphous character for simple solution-processed organic light-emitting diodes, and negligible triplet-triplet (T-T) annihilation, a series of new phosphorescent cyclometalated Ir-III and Pt-II complexes with triphenylamine-anchored fluorenylpyridine dendritic ligands were synthesized and characterized. The photophysical, thermal, electrochemical and electroluminescent properties of these molecules are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic nanoparticles (NPs) with attractive electronic, optical, magnetic, thermal and catalytic properties have attracted great interest due to their important applications in physics, chemistry, biology, medicine, materials science and interdisciplinary fields. Biomolecule-NP hybrid systems, which combine recognition and catalytic properties of biomolecules with electronic, optical, magnetic and catalytic properties of NPs, are particularly new materials with synergistic properties originating from the components of the hybrid composites. The biomolecule-NP hybrid system has excellent prospects for interfacing biological recognition events with electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances and key strategies in capillary electrophoresis and microchip CE with electrochemical detection (ECD) and electrochemiluminescence (ECL) detection are reviewed. This article consists of four main parts: CE-ECD; microchip CE-ECD; CE-ECL; and microchip CE-ECL. It is expected that ECD and ECL will become powerful tools for CE microchip systems and will lead to the creation of truly disposable devices. The focus is on papers published in the last two years (from 2005 to 2006).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in {clay/Ru(bpy)(3)(2+)}(n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru( bpy)(3)(2+) and the regular growth of the {clay/Ru( bpy)(3)(2+)}(n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine ( TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes [Cu(dnpb)(DPEphos)](+)(X-) (dnpb and DPEphos are 2,9-di-n-butyl-1,10-phenanthroline and bis[2-(diphenyl-phosphino)phenyl]ether, respectively, and X- is BF4-, ClO4-, or PF6-) can form high quality films with photoluminescence quantum yields of up to 71 +/- 7%. Their electroluminescent properties are studied using the device-structure indium tin oxide (ITO)/complex/metal cathiode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light-emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre-biasing at 25 V for 40 s, the devices turn on instantly, with a turn-on voltage of ca. 2.9 V. A current efficiency of 56 cd A(-1) and an external quantum efficiency of 16% are realised with Al as the cathode. Using a low-work-function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn-on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m(-2) at 6 V and 4100 cd m(-2) at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the fabrication of an integrated microelectrode for electrochemical detection (ECD) on an electrophoresis microchip is described. The pattern of the microelectrode was directly made on the surface of a microscope slide through an electroless deposition procedure. The surface of the slide was first selectively coated with a thin layer of sodium silicate through a micromolding in capillary technique provided by a poly(dimethylsiloxane) (PDMS) microchannel; this left a rough patterned area for the anchoring of catalytic particles. A metal layer was deposited on the pattern guided by these catalytic particles and was used as the working electrode. Factors influencing the fabrication procedure were discussed. The whole chip was built by reversibly sealing the slide to another PDMS layer with electrophoresis microchannels at room temperature. This approach eliminates the need of clean room facilities and expensive apparatus such as for vacuum deposition or sputtering and makes it possible to produce patterned electrodes suitable for ECD on microchip under ordinary chemistry laboratory conditions. Also once the micropattern is ready, it allows the researchers to rebuild the electrode in a short period of time when an electrode failure occurs. Copper and gold microelectrodes were fabricated by this technique. Glucose, dopamine, and catechol as model analytes were tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.