211 resultados para drying kinetics

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional oven drying (COD) and supercritical drying (SCD) methods were applied to the preparation of Mn-substituted hexaaluminate (BaMnA(11)O(19-alpha)) catalysts. The effect of drying methods on phase composition, specific surface area, pore structure and combustion activity of the samples was investigated. The samples obtained by SCD have higher surface area, narrower pore size distribution, and higher combustion activity than those obtained by COD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory and thrombotic processes. The rolling under hydrodynamic shear forces is a first step in directing leukocytes out of the blood stream into sites of inflammation and is mediated by the selectins, a family of extended, modular, and calcium-dependent lectin receptors. The interactions between P-, E-or L-selectins and their count.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionization kinetics of sodium diluted in argon is studied in a shock tube, in which the test gas mixture is ionized by a reflected shock wave and subsequently quenched by a strong rarefaction wave. A Langmuir electrostatic probe is used to monitor the variation of the ion number density at the reflection shock wave region. The working state of the probe is in the near fi-ee fall region and a correction for reduction of the probe current due to elastic scattering in the probe sheath is introduced. At the temperature range of 800 to 2600 K and in the ambience of argon gas, the three-body recombination rate coefficient of the sodium ion with electron is determined: 3.43 x 10(-14)T(-3.77) cm(6).s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg65 Cu25 Gdlo bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA . The mechanism of the GFA decrease was also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More and more evidences come out to support that the functionality of adhesion molecules are influenced by the surface microtopology of cell carrier or substrate. Adhesive molecules usually express on the microvilli of a cell, providing a well-defined spatial configuration to mediate the adhesions to the counterpart molecules on the apposed surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study electron affinity kinetics, a shock tube method was applied, in which the test gas was ionized by a reflected shock wave and subsequently quenched by a strong rarefaction wave. As the quenching speed of 106 K/s was reached, a nonequilibrium ionization-recombination process occurred, which was dominated by ion recombination with electrons. A Langmuir electrostatic probe was used to monitor variation in the ion number density at the reflection shock region. The working state of the probe was analyzed...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic vitiated airstream. The range of stagnation pressure and temperature studied varied from 1.0 to 4.5 MPa and from 1300 to 2200 K, respectively. Experimental results show that the self-ignition limit, in terms of either global or local quantities of pressure and temperature, exhibits a nonmonotonic behavior resembling the classical homogeneous explosion limit of the hydrogen-oxygen system. Specifically, for a given temperature, increasing pressure from a low value can render a nonignitable mixture to first become ignitable, then nonignitable again, This correspondence shows that, despite the globally supersonic nonpremixed configuration studied herein, ignition is strongly influenced by the intricate chemical reaction mechanism and thereby exhibits the homogeneous explosion character. Consequently, self-ignition criteria based on a global reaction rate approximating the complex chemistry are inadequate. An auxiliary computational study on counterflow ignition was also conducted to systematically investigate the contamination effects of vitiated air. Results indicate that the net contamination effects for the present experimental data are expected to be substantially smaller than contributions from the individual contamination species because of the counterbalancing influences of the H2O-inhibition and NO-promotion reactions in effecting ignition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptor/ligand interactions are basic issues to cell adhesion, which are important to many physiological and pathological processes such as lymphocyte-mediated cytotoxicity, tumor metastasis and inflammatory reactionl. Selectin/carbohydrate ligand bindings have been found to mediate the fast rolling of leukocytes on activated endothelial monolayer. Kinetic rate and binding affinity constants are essential determinants of cell adhesion...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration, flow duration and rate, antibody-presenting level, as well as pH value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions. These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the macroscopic drying patterns of aqueous suspensions of colloidal silica spheres. It was found that convection strength can influence pattern formation. Uniformed films are obtained at weaker convection strength. In addition, we make clear that it is not reasonable to discuss individually the effect of temperature and humidity on the colloid self-assembly. The physical mechanism is that these factors have relationship with the evaporation rate, which can affect the convection strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanics and surface microtopology of the molecular carrier influence cell adhesion, but the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the carrier stiffness and microtopology affected two-dimensional kinetics of interacting adhesion molecules on two apposing surfaces. Interactions of P-selectin with P-selectin glycoprotein ligand-1 (PSGL-1) were used to demonstrate such effects by presenting the molecules on three carrier systems: human red blood cells (RBCs), human promyelocytic leukemia HL-60 cells, and polystyrene beads. Stiffening the carrier alone or in cooperation with roughing the surface lowered the two-dimensional affinity of interacting molecules by reducing the forward rate but not the reverse rate, whereas softening the carrier and roughing the surface had opposing effects in affecting two-dimensional kinetics. In contrast, the soluble antibody bound with similar three-dimensional affinity to surface-anchored P-selectin or PSGL-1 constructs regardless of carrier stiffness and microtopology. These results demonstrate that the carrier stiffness and microtopology of a receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding. This provides new insights into understanding the rolling and tethering mechanism of leukocytes onto endothelium in both physiological and pathological processes.