29 resultados para discrete dislocation dynamics

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many experimental observations have clearly shown that dislocation interaction plays a crucial role in the kinetics of strain relaxation in epitaxial thin films. A set of evolution equations are presented in this article. The key feature of the equations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microtwins are frequently observed in face-centered-cubic (fcc) metal nanowires with low stacking fault energy. The authors have previously reported that the tensile Yield strength of copper nanowires can be increased by, the presence of twin boundaries. lit this work, simulations are carried out under both uniaxial tension and compression loading, to demonstrate that the strengthening effects are inherent to these nanowires, independent of the loading condition (tensile/compressive). It appears that the strengthening mechanism of the twinned nanowires can be attributed to stress redistribution due to the change of crystallographic orientations across twin boundaries, which requires larger external stress to make them Yield as compared to the twin-free wire.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents models to describe the dislocation dynamics of strain relaxation in an epitaxial uniform layer, epitaxial multilayers and graded composition buffers. A set of new evolution equations for nucleation rate and annihilation rate of threading dislocations is developed. The dislocation interactions are incorporated into the kinetics process by introducing a resistance term, which depends only on plastic strain. Both threading dislocation nucleation and threading dislocation annihilation are characterized. The new evolution equations combined with other evolution equations for the plastic strain rate, the mean velocity and the dislocation density rate of the threading dislocations are tested on GexSi1-x/Si(100) heterostructures, including epitaxial multilayers and graded composition buffers. It is shown that the evolution equations successfully predict a wide range of experimental results of strain relaxation and threading dislocation evolution in the materials system. Meanwhile, the simulation results clearly signify that the threading dislocation annihilation plays a vital role in the reduction of threading dislocation density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<discrete cells was proposed and named the discrete fluid dynamics (DFD) algorithm. Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A correlative reference model for computer molecular dynamics simulations is proposed. Based on this model, a flexible displacement boundary scheme is introduced and the dislocations emitted from a crack tip can continuously pass through the border of the inner discrete atomic region and pile up at the outer continuum region. The effect of the emitted dislocations within the plastic zone on the inner atomistic region can be clearly demonstrated. The simulations for a molybdinum crystal show that a full dislocation in a bcc crystal is dissociated into three partial dislocations and interaction between the crack and the emitted dislocations results in gradual decrease of the local stress intensity factor.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A correlative reference model for a computer simulation of molecular dynamics is proposed in this paper. Based on this model, a flexible displacement boundary scheme is naturally introduced and the dislocations emitted from a crack tip are presumed to continuously pass through the border of an inner discrete atomic region to pile up at an outer continuum region. The simulations for a Mo crystal show that the interaction between a crack and emitted dislocations results in the decrease in local stress intensity factor gradually.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interactive pair potential between Al and H is obtained based on the ab initio calculation and the Chen-Mobius 3D lattice inversion formula. By utilizing the pair potentials calculated, the effects of hydrogen on the dislocation emission from crack tip have been studied. The simulated result shows that hydrogen can reduce the cohesive strength for Al single crystal, and then the critical stress intensity factor for partial dislocation emission decreases from 0.11 MPa root m (C-H = 0) to 0.075 MPa root m (C-H=0.72%) and 0.06 MPa root m (C-H = 1.44%). This indicates thar hydrogen can enhance the dislocation emission. The simulation also shows that atoms of hydrogen can gather and turn into small bubbles, resulting in enhancement of the equilibrium vacancy concentration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of a dislocation array emitted from a crack tip under mode II loading with asymmetric tilt grain boundaries (GBs) is analysed by the molecular dynamics method. The GBs can generally be described by planar and linear matching zones and unmatching zones. All GBs are observed to emit dislocations. The GBs migrated easily due to their planar and linear matching structure and asymmetrical type. The diffusion induced by stress concentration is found to promote the GB migration. The transmissions of dislocations are either along the matched plane or along another plane depending on tilt angle theta. Alternate processes of stress concentration and stress relaxation take place ahead of the pileup. The stress concentration can be released either by transmission of dislocations, by atom diffusion along GBs, or by migration of GBs by formation of twinning bands. The simulated results also unequivocally demonstrate two processes, i.e. asymmetrical GBs evolving into symmetrical ones and unmatching zones evolving into matching ones during the loading process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gliding behavior of edge dislocation near a grain boundary(QB) in copper under pure shear stresses is simulated by using molecular dynamics(MD) method. Many-body potential incorporating the embedded atom method (EAM) is used. The critical shear stresses for a single disocation to pass across GB surface are obtained at values of sigma(c)=23MPa similar to 68 MPa and 137 MPa similar to 274 MPa for Sigma=165 small angle tilt GB at 300 K and 20 K, respectively. The first result agrees with the experimental yield stress sigma(y)(=42 MPa) quite well. It suggests that there might be one of the reasons of initial plastic yielding caused by single dislocation gliding across GB. In addition, there might be possibility to obtain yield strength from microscopic analysis. Moreover, the experimental value of sigma(y) at low temperature is generally higher than that at room temperature. So, these results are in conformity qualitatively with experimental fact. On the other hand, the Sigma=25 GB is too strong an obstacle to the dislocation. In this case, a dislocation is able to pass across GB under relatively low stress only when it is driven by other dislocations. This is taken to mean that dislocation pile-up must be built up in front of this kind of GB, if this GB may take effect on the process of plastic deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is degassed R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. Only the dynamics of the vapor bubbles, particularly the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. It's found that these distinct behaviors can be explained by the Marangoni convection in the liquid surrounding vapor bubbles. The origin of the Marangoni effect is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular dynamics method is used to simulate microcrack healing during heating or/and under compressive stress. A centre microcrack in Cu crystal would be sealed under compressive stress or by heating. The role of compressive stress and heating in crack healing was additive. During microcrack healing, dislocation generation and motion occurred. When there were pre-existing dislocations around the microcrack, the critical temperature or compressive stress necessary for microcrack healing would decrease, and, the higher the number of dislocations, the lower the critical temperature or compressive stress. The critical temperature necessary for microcrack healing depended upon the orientation of the crack plane. For example, the critical temperature for the crack along the (001) plane was the lowest, i.e. 770K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.