84 resultados para diffusion layer

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AgInSbTelSi thin films on glass substrates are prepared by dc magnetron sputtering at room temperature. Using Si underlayer as the thermal diffusion layer, the super-resolution nano-ablation holes with a size of 70nm in the AgInSbTe phase change films are obtained by a far-field focused laser experimental setup, with laser wavelength 405nm and objective-lens numerical aperture 0.90. The nano-ablation formation mechanism is analysed and discussed via the thermal diffusion of sample structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SAFER系列密码算法的总体结构采用SP-网络,它的设计具有其独到的几个特色.分析SAFER系列密码算法的设计思想,沿着设计者对它们不断改进的思路,分别描述其混淆层、扩散层、密钥扩展算法的性质和对它们的攻击.最后提出几个尚需进一步考虑的问题.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dewetting behavior of thin (about 30 nm) polystyrene (PS) films filled with different amount of (C6H5C2H4NH3)(2)PbI4 (PhE-PbI4) on the silicon substrate with a native oxide layer was investigated. For different additive concentrations, PhE-PbI4 showed different spatial distributions in the PS films, which had a strong influence on the film wettability, dewetting dynamics, and mechanism. With 0.5 wt % additive, PhE-PbI4 formed a noncontinuous diffusion layer, which caused a continuous hole nucleation in the film. With about 1 wt % additive, a continuous gradient distribution layer of PhE-PbI4 formed in the film, which inhibited the dewetting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For a sphere electrode enclosed in finite-volume electrolyte, the measured current will deviate from the result predicted by the semi-infinite diffusion theory after some time. By random-walk simulation, we compared this time to the one needed for diffusion layer to reach electrolyte boundary, and revealed a clear signal delay of electrochemical current. Further we presented a quantitative description of this delay time. The simulation results suggested that the semi-infinite diffusion theory can even be applied when the theoretical diffusion layer grows to 1.28 electrolyte thicknesses, with an accuracy better than 0.5%. We attributed this time delay to the molecules' finite propagation velocity. Finally, we discussed how this delay can influence and facilitate the following electrochemical detection towards the nanometer and single-cell scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analytical expressions of quasi-first and second order homogeneous catalytic reactions with different diffusion coefficients at ultramicrodisk electrodes under steady state conditions are obtained by using the reaction layer concept. The method of treatment is simple and its physical meaning is clear. The relationship between the diffusion layer, reaction layer, the electrode dimension and the kinetic rate constant at an ultramicroelectrode is discussed and the factor effect on the reaction order is described. The order of a catalytic reaction at an ultramicroelectrode under steady state conditions is related not only to C(Z)*/C(O)* but also to the kinetic rate constant and the dimension of the ultramicroelectrode; thus the order of reaction can be controlled by the dimension of the ultramicroelectrode. The steady state voltammetry of the ultramicroelectrode is one of the most simple methods available to study the kinetics of fast catalytic reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expansive soil is a kind of typical unsaturated soil with characteristics of high swelling-shrinking deformation, cracks and over consolidation. It is very harmful to civil engineering, As a new processing method deal with expansive soil, Chemistry treatment has widespread applied in developed countries such as Europe and America, and also gained remarkable result. Based on the embankment filling soil improving testing projects in Meng-Xin freeway, this paper proposed a new processing method to expansive soil embankment wrapped with PAS-treated soil, experimental study of expansive soil chemical improved by PAS is been carried out. The water content change is the external factor which causes expansive soil to have swelling-shrinkage deformation. this reflected that the soil body swelling-shrinkage characteristic mainly depends on its mineral ingredient and the soil-water mutual function. This paper takes expansive soil as one kind of ordinary high plastic clay from angle of clay-water mutual function explained the expansive soil swelling-shrinkage deformation mechanism on microscopic. And take this swelling-shrinkage mechanism as the master line, Cooperates with the China Academy of Chemistry, we developed the new method PAS treatment, trough ionic exchange, joint, package and flocculation, the stronger static electricity function weakened the level through adsorption and the stronger static electricity function, PAS can weakened the negative charge repulsion between levels, causes the electric potential to reduce, diffusion layer thickness to be thinner, and improves the water affinity performance of expansive soil effectively. Moreover the space network architecture compromised with PAS and soil enhanced the joint strength between the clay particles , enable the soil body to have comparatively high strength and the distortion rate. pointed proposed the PAS modified principle. Combine with the construction of experimented road, this paper sums up and presents the construction craft and technology requirement of PAS treatment to expansive soil embankment. Through many experimental studied the basic physical property, the intensity characteristic and water stability changes of expansive soil and PAS-treated soil. The results of study indicate that adding lime into the expansive soil can reduce the content of clay gain obviously, reduce the plasticity notably, increase the strength greatly, control the property of swelling and shrinking effectively, and can meliorate the stability of sucking water clearly. Simultaneity PAS don’t change the cultivate capacity of the soil, the modified slope of the embankment can adopt plant fixed slope method as ecology protection. Finally the processing effect of use different treatment has analyzed through numerical simulation, summarized the PAS chemical wrapping treatment process in the actual project application, and appraised its processing effect and the project efficiency. The research indicated that PAS chemical treatment is one effective method to improve expansive soil. Compare with long-distance replacement, especially in the high plastic expansive soil massive distribution area, PAS treatment has the very greatly economical superiority to be promoted. The study in the paper not only afforded technique method to Meng-Xin expressway construction but also important for improvement of the expressway construction theory in swelling soil areas. Key words: PAS; expansive soil; swelling-shrinkage deformation mechanism; wrapping embankment; chemical modified treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential step and cyclic voltammetric experiments in the thin layer cell were studied by the digital simulation method in this work. A relationship between the time needed for exhaustive electrolysis of the electroactive species and the thickness of the thin layer cell was obtained. On the basis of this formula, the lower time limit for a kinetic plot of the following chemical reaction can be estimated. For the cyclic voltammetry, a semiempirical formula was derived for the peak-peak potential difference (Delta Ep) in terms of the sweep rate (v), thickness of the cell (d), diffusion coefficient (D) and electron transfer number (n) 59 - n Delta Ep/n Delta Ep = 0.328(RT D/nF vd(2))(1.20).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any waterway with one end closed and the other open is generally called a blind channel. The main flow tends to expand, separate, and cause circulation at the mouth of blind channels. The main flow continuously transfers momentum and sediment into the circulation region through the turbulent mixing region (TMR) between them, thus leading to a large amount of sediment deposition in the blind channels. This paper experimentally investigated the properties of the water flow and sediment diffusion in TMR, demonstrating that both water flow and sediment motion in TMR approximately coincide with a similar structure as in the free mixing layer induced by a jet. The similarity functions of flow velocity and sediment concentration are then assumed, based on observation, and the resulting calculation of these functions is substantially facilitated. For the kind of low velocity flow system of blind channels with a finite width, a simple formula for the sediment deposition rate in blind channels is established by analyzing the gradient of crosswise velocity and sediment concentration in TMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of diffuse treatment on coating microstructure and oxidation resistance at high-temperature of hot-dip aluminum were studied by means of TEM, SEM and XRD. The results show that, the diffusion temperature has significant effect on structure of coatings and its oxidation resistance. After diffusion at 750 degreesC, the coating consists of thick outer surface layer (Fe2Al5+ FeAl2), thin internal layer (FeAl + stripe FeAl2), and its oxidation resistance is poor. After diffusion at 950 degreesC, the outer surface layer is composed of single FeAl2 phase, the internal layer is composed of FeAl phase, and its oxidation resistance declines due to the occurrence of early stage internal oxidation cracks in the coating. After diffusion at 850 degreesC, the outer surface layer becomes thinner and consists of FeAl2 Fe2Al5(small amount), the internal layer becomes thicker and consists of FeAl+spherical FeAl2, and the spheroidized FeAl2 phase in the internal layer and its existing in FeAl phase steadily improve the oxidation resistance of the coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of a surface plastic deformation method a nanocrystalline (NC) intermetallic compound was in situ synthesized on the surface layer of bulk zirconium (Zr). Hardened steel shots (composition: 1.0C, 1.5Cr, base Fe in wt.%) were used to conduct repetitive and multidirectional peening on the surface layer of Zr. The microstructure evolution of the surface layer was investigated by X-ray diffraction and scanning and transmission electron microscopy observations. The NC intermetallic layer of about 25 gm thick was observed and confirmed by concentration profiles of Zr, Fe and Cr, and was found to consist of the Fe100-xCrx compound with an average grain size of 22 nm. The NC surface layer exhibited an extremely high average hardness of 10.2 GPa. The Zr base immediately next to the compound/Zr interface has a grain size of similar to 250 nm, and a hardness of similar to 3.4 GPa. The Fe100-xCrx layer was found to securely adhere to the Zr base. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are carried out to analyze the diffusion bonding at Cu/Al interfaces. The results indicate that the thickness of the interfacial layer is temperature-dependent, with higher temperatures yielding larger thicknesses. At temperatures below 750 K, the interface thickness is found to increase in a stepwise manner as a function of time. At temperatures above 750 K, the thickness increases rapidly and smoothly. When surface roughness is present, the bonding process consists of three stages. In the first stage, surfaces deform under stress, resulting in increased contact areas. The second stage involves significant plastic deformation at the interface as temperature increases, resulting in the disappearance of interstices and full contact of the surface pair. The last stage entails the diffusion of atoms under constant temperature. The bonded specimens show tensile strengths reaching 88% of the ideal Cu/Al contact strength. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 mu m thick and consisted of the intermetallic compound FeCr with an average grain size of 25 +/- 10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.