8 resultados para dibutyl methylphosphonate
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
New types of templates and novel interactive mechanisms between template and framework are very important for creating porous materials. In this work, by using neutral dibutyl methylphosphonate as a template, an inorganic-organic hybrid mesoporous material, aluminum methylphosphonate, was prepared. The as-synthesized material was studied by P-31 magnetic angle spinning nuclear magnetic resonance (MAS NMR), Al-27 MAS NMR, C-13 CP/MAS, FT-IR spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), and transmission electron microscopy. After thermal treatment at 673 K and 10 mmHg for 2 h, hybrid mesoporous foam was obtained. The transformation process was investigated by FT-IR. TG-DTA results indicate that the methyl group bonded to the framework keeps intact up to 792 K under air and 823 K under nitrogen. The characterization results from nitrogen gas adsorption-desorption measurements show that the BET surface area and the Barrett-Joyner-Halenda desorption cumulative pore volume of the foam are 90 m(2) g(-1) and 0.32 cm(3) g(-1) respectively. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Two porous zirconium methylphosphonates (designated as ZMPmi and ZMPme respectively) were synthesized by using dibutyl methylphosphonate (DBMP) as a template. Two efficient post-synthetic treatments were developed to remove the incorporated template without destroying the hybrid structures. The materials were characterized by SEM, EPMA, TG, DTA, FTIR, and NMR. Specific surface area and porosity were evaluated by BET, alpha(s)-plots and DFT methods based on N-2 adsorption-desorption isotherms. The specific surface areas of ZMPmi and ZMPme are determined to be 279 and 403 m(2) g(-1) and the maxima of pore size distributions are at 0.7 and 1.3 nm respectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Phthalic acid esters (PAEs) have become widely diffused in the environment via the manufacturing process. Numerous experiments have shown that the bioaccumulation of PAEs occurred in the aquatic and terrestrial food chain; meanwhile, it was found that some of PAEs were considered as potential carcinogens, teratogens and mutagens. In this research, two vertical/reverse-vertical flow constructed wetland systems were set up to study its removal efficiency of dibutyl, phthalate (DBP) pollution. The results showed that the constructed wetland system could remove DBP effectively, and the removal rates reached nearly 100%. Substrate microorganism and enzymatic activities probably played key roles during DBP removal, and the removal of DBP probably mainly took place in the upper layer of chamber A in the constructed wetland systems. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Two sets of small scale systems of staged, vertical-flow constructed wetlands (VFCW) were operated in a greenhouse to study the purification of dibutyl phthalate (DBP) in admeasured water. Each system consisted of two chambers in which water flowed downward in chamber I and then upward in chamber 2. The systems were intermittently fed with wastewater under a hydraulic load of 420 mm(.)d(-1). The measured influent concentrations of DBP in the experimental system were 9.84 mg(.)l(-1), while the other system was used as a control and received no DBP. Effluent concentrations of the treated system averaged 5.82 mug(.)l(-1) and were far below the Chinese DBP discharge standard of less than or equal to0.2 mg(.)l(-1). These results indicate the potential purification capacity of this new kind of constructed wetland in removing DBP from a polluted water body.
Resumo:
The structural evolution of the ordered N-N' dibutyl-substituted quinacridone (QA4C) multilayers (3 MLs) has been monitored in situ and in real time at various substrate temperatures using low energy electron diffraction (LEED) during organic molecular beam epitaxy (MBE). Experimental results of LEED patterns clearly reveal that the structure of the multilayer strongly depends on the substrate temperature. Multilayer growth can be achieved at the substrate temperatures below 300 K, while at the higher temperatures we can only get one ordered monolayer of QA4C. Two kinds of structures, the commensurate and incommensurate one, often coexist in the QA4C multilayer. With a method of the two-step substrate temperatures, the incommensurate one can be suppressed, and the commensurate, on the other hand, more similar to the (001) plane of the QA4C bulk crystal, prevails with the layer of QA4C increasing to 3 MLs. The two structures in the multilayers are compressed slightly in comparison to the original ones in the first monolayer.
Resumo:
PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.
Resumo:
Four cyclometalated Pt(II) complexes, i.e., [(L-2)PtCl] (1b), [(L-3)PtCl] (1c), [(L-2)PtC CC6H5] (2b) and [(L-3)PtC CC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2'-bipyridine and HL3 = 4-[p(-N,N'-dibutyl-N'-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2'-bipyridine), have been synthesized and verified by H-1 NMR, C-13 NMR and X-ray crystallography. Unlike previously reported complexes [(L-1)PtCl] (1a) and [(L-1)PtC CC6H5] (2a) (HL1 = 4,6-diphenyl-2,2'-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer ((MLCT)-M-1) (d pi(Pt) -> pi*(L)) transitions (epsilon similar to 2 x 10(4) dm(3) mol (1) cm (1)) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c.