7 resultados para delta 13C, particulate organic carbon
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Dissolved organic carbon (DOC), stable carbon isotopic (delta(13)C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. delta(13)C values of both POC (-23.8parts per thousand to -26.8parts per thousand) and DOC (-25.0parts per thousand to -29.0parts per thousand) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in delta(13)C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-delta(13)C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-delta(13)C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10-30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Temporal and spatial changes in delta(13) C and delta 15 N of particulate organic matter (POM) and Hemiculter leucisculus were studied in the Yangtze River of China. Isotopic signatures of POM showed seasonal variations, which was assumed to be associated with allochthonous organic input and autochthonous phytoplankton growth. delta C-13 of H. leucisculus was 1.1 % higher than that of POM, which suggested that the food source of H. leucisculus was mostly from the POM. A mass balance model indicated the trophic position of H. leucisculus in the food web of Yangtze River was estimated to be 2.0 - 2.1, indicating that this fish mainly feeds on planktonic organic matter, which agreed with previous gut content analysis.
Resumo:
IEECAS SKLLQG
Resumo:
Stable carbon isotopes of organic matter originated from different soil layers (0~5 cm, 5~15 cm, 15~25 cm, 25~35 cm, 35~50 cm, 50~65 cm) were investigated in the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences. The preliminary results indicated that δ13C values of soil organic matter increased with increased soil depth. δ13C of soil organic carbon in 0~5 cm layer showed the lowest value, -25.09‰; while 50~65 cm soil layer possessed the lowerδ13C value, -13.87‰. Based on mass balance model of stable isotopes, it was proposed that the percentage of C4 carbon source tend to increase with increased soil depth. The preliminary study indicated that alpine meadow might have undergone a successive process from C4-dominated community to C3-dominated one. However, changing δ13C values in atmospheric CO2 overtime and different processes of soil organic carbon formation (or eluviation) might somewhat contribute to increasing δ13C values. In this case, mass balance model would underestimate C3 community and overestimate C4 community.