6 resultados para data link
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
为了解决自主/遥控水下机器人(ARV)水面控制台与水下载体之间的通信问题,设计并实现了一种基于分层结构的水面/水下通信协议。该协议根据ARV 通信特殊需求,分为应用层,数据链路层与物理层,各层之间通过事件路由的方式进行调用,层内协议规则通过有限状态机来描述,整个协议结构清晰。ARV 实验结果证明这一通信协议具有传输速率快,可靠性高等优点。
Resumo:
讨论了水下机器人远程通信光纤微缆的动力学问题,研究分析了在海洋层流条件下水下机器人的运动对光纤微缆张力的影响,在仿真分析的基础上提出了对光纤微缆收放系统的设计要求并给出了概念设计方案。
Resumo:
本文概要介绍了基金会现场总线的网络结构,主要讨论了基金会现场总线数据链路层的工作机理及其实现.
Resumo:
媒体结合单元(MAU)是现场总线仪表中的重要部件。介绍一种新型的媒体结合单元电路器件SIM1-2,该器件符合IEC61158-2数据链路层协议规范。在详细分析该器件的系统结构和主要功能的基础上,介绍其在总线仪表系统中的应用。并从资源需要,处理速度和功耗等方面分析单片机、通讯控制器、MAU电路的选择等关键问题。
Resumo:
根据领域中专用短程通信()协议的基础规范,设计出应用于电子收费系统的物理层、数据链路层和应用层相关参数ITSDSRCDSRC选定和设置。力求在电子收费领域相关的装置与设备能遵循指定的规格标准,并增进各系统相互之间的相容性和互连性。
Resumo:
Classical fracture mechanics is based on the premise that small scale features could be averaged to give a larger scale property such that the assumption of material homogeneity would hold. Involvement of the material microstructure, however, necessitates different characteristic lengths for describing different geometric features. Macroscopic parameters could not be freely exchanged with those at the microscopic scale level. Such a practice could cause misinterpretation of test data. Ambiguities arising from the lack of a more precise range of limitations for the definitions of physical parameters are discussed in connection with material length scales. Physical events overlooked between the macroscopic and microscopic scale could be the link that is needed to bridge the gap. The classical models for the creation of free surface for a liquid and solid are oversimplified. They consider only the translational motion of individual atoms. Movements of groups or clusters of molecules deserve attention. Multiscale cracking behavior also requires the distinction of material damage involving at least two different scales in a single simulation. In this connection, special attention should be given to the use of asymptotic solution in contrast to the full field solution when applying fracture criteria. The former may leave out detail features that would have otherwise been included by the latter. Illustrations are provided for predicting the crack initiation sites of piezoceramics. No definite conclusions can be drawn from the atomistic simulation models such as those used in molecular dynamics until the non-equilibrium boundary conditions can be better understood. The specification of strain rates and temperatures should be synchronized as the specimen size is reduced to microns. Many of the results obtained at the atomic scale should be first identified with those at the mesoscale before they are assumed to be connected with macroscopic observations. Hopefully, "mesofracture mechanics" could serve as the link to bring macrofracture mechanics closer to microfracture mechanics.