6 resultados para cytomegalovirus

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of RNA interference for gene knockdown in zebrafish through expression of the small interfering RNA mediators from DNA vectors has created a lot of excitement in the research community. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against vascular endothelial growth factor (VEGF) gene in zebrafish was tested, and its effects on VEGF-mediated vasculogenesis and angiogenesis were evaluated. Altogether four vectors targeting various locations of VEGF gene were constructed, and pSI-V4 was proven to be the most effective one. Microinjection of pSI-V4 into the zebrafish embryos resulted in defective vascular formation and down regulation of VEGF expression. In situ hybridization analysis indicated that silencing VEGF gene expression by pSI-V4 resulted in down regulation of neuropilin-1 (NRP1), a potent VEGF receptor. Knockdown of VEGF expression by morpholino gave the same result. This provided evidence that the VEGF-mediated angiogenesis in zebrafish was in part dependent on NRP1 expression. The results contributed to a better understanding of molecular mechanisms of cardiovascular development and provided a potential promoter for making inducible knockdown in zebrafish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zebrafish has been generally considered as an excellent model in case of drug screening, disease model establishment, and vertebrate embryonic development study. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against VEGF gene in zebrafish was tested, and its effect on vascular development was assed, too. Using RT-qPCR, blood vessel staining, and in situ hybridization, we confirmed certain transcriptional activity and down regulation of gene expression by the vector. In situ hybridization analysis indicated selective inhibition of NRP1 expression in the VEGF gene loss of function model, which might imply in turn that VEGF could not only activate endothelial cells directly but also could contribute to stimulating angiogenesis in vivo by a mechanism that involved up-regulation of its cognate receptor expression in zebrafish. This contributed to a better understanding of molecular mechanisms of cardiovascular development. The system improved the success rate in making inducible knockdown and widened the possibilities for better therapeutic targets in zebrafish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus iniae is a severe aquaculture pathogen that can also infect humans and animal. A putative secretory antigen, Slat 0, was identified from a pathogenic S. iniae strain by in vivo-induced antigen technology. Using turbot as an animal model, the immunoprotective effect of Sia10 was examined as a DNA vaccine in the form of plasmid pSia10, which expresses sia10 under the cytomegalovirus immediate-early promoter. In fish vaccinated with pSia10, transcription of sia10 was detected in muscle, liver, spleen, and kidney at 7, 14, 21, 28, 35, 42, and 49 days post-vaccination. In addition, production of Sia10 protein was also detected in the muscle tissues of pSia10-vaccinated fish. Fish vaccinated with pSia10 exhibited a relative percent survival (RPS) of 73.9% and 92.3%, respectively, when challenged with high and low doses (producing a cumulative mortality of 92% and 52%, respectively, in the control groups) of S. iniae. Immunological and transcriptional analyses showed that vaccination with pSia10(i) induced much stronger chemiluminescence response and significantly higher levels of nitric oxide production and acid phosphatase activity in head kidney macrophages; (ii) caused the production of specific serum antibodies, which afforded apparent immunoprotection when transferred passively into naive fish; and (iii) upregulated the expression of the genes encoding proteins that are possibly involved in both innate and adaptive immune responses. Taken together, these results indicated that pSia10 is an effective vaccine candidate and may be used in the control of S. iniae infection in aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.