7 resultados para critical intraband interaction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Channeling/segmentation cracks may arise in the coating subjected to in-plane tensile stress. The interaction between these multiple cracks, say the effect of the spacing between two adjacent cracks oil the behaviors of channels themselves and the interface around the interface corners, attracts wide interest. However, if the spacing is greater than a specific magniture,, namely the Critical Spacing (CS), there should be no interaction between such channeling/segmentation cracks. In this study, file mechanism of the effect of the crack spacing oil the interfacial stress around the interface corner will be Interpreted firstly. Then the existence of the CS will be verified and the relationship between the CS and the so-called stress transfer length Ill coating will be established for plane strain condition. Finally, the dependence of the stress transfer length, simultaneously of the CS, on the sensitive parameters will be investigated with finite element method and expressed with a simple empirical formula. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We study the effects of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the ground-state properties of the Heisenberg XY spin chain by means of the fidelity susceptibility, order parameter, and entanglement entropy. Our results show that the DM interaction could influence the distribution of the regions of quantum phase transitions and cause different critical regions in the XY spin model. Meanwhile, the DM interaction has effective influence on the degree of entanglement of the system and could be used to increase the entanglement of the spin system.
Resumo:
There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. 0 2002 Biomedical Engineering Society.
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
We propose a simple method to detect the relative strength of Rashba and Dresselhaus spin-orbit interactions in quantum wells (QWs) without relying on the directional-dependent physical quantities. This method utilizes the two different critical gate voltages that leading to the remarkable signals of SU(2) symmetry, which happens to reflect the intrinsic-structure-inversion asymmetry of the QW. We support our proposal by the numerical calculation of in-plane relaxation times based on the self-consistent eight-band Kane model. We find that the two different critical gate voltages leading to the maximum spin-relaxation times [one effect of the SU(2) symmetry] can simply determine the ratio of the coefficients of Rashba and Dresselhaus terms. Our proposal can also be generalized to extract the relative strengths of the spin-orbit interactions in quantum-wire and quantum-dot structures.
Resumo:
Among the functional nucleic acids studied, adenine-rich nucleic acids have attracted attention due to their critical roles in many biological processes and self-assembly-based nanomaterials, especially deoxyribonucleic acids (abbreviated as poly(dA)). Therefore the ligands binding to poly(dA) might serve as potential therapeutic agents. Coralyne, a kind of planar alkaloid, has been firstly found that it could bind strongly to poly(dA). This work herein reports an approach for visual sensing of the coralyne-poly(dA) interaction. This method was based on the coralyne inducing poly(dA) into the homo-adenine DNA duplex and the difference in electrostatic affinity between single-stranded DNA and double-stranded DNA with gold nanoparticles (GNPs). Furthermore, we applied the recognition process of the interaction between coralyne and poly(dA) into specific coralyne detection with the assistance of certain software (such as Photoshop). A linear response from 0 to 728 nM was obtained for coralyne, and a detection limit of 91 nM was achieved.
Resumo:
Conformational analysis of 2,2'-bithiophene (BT) under the influence of an electric field (EF) constructed by point charges has been performed by using semi-empirical Austin Model 1 (AM1) and Parametric model number 3 (PM3) calculations. When the EF perpendicular to the molecular conjugation chain is applied, both AM1 and PM3 calculations show an energy increase of the anti-conformation. AM1 predicts that the global minimum shifts to syn-conformation when the EF strength is larger than a critical value. and PM predicts that the local minimum in anti-conformation vanishes. This kind of EF effect has been ascribed to the EF and dipole moment interaction.