6 resultados para cost saving production technologies

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对多品种批量生产类型,建立了调度约束的生产计划与调度集成优化模型。模型的目标函数是使总调整费用、库存费用及生产费用之和最小,约束函数包括库存平衡约束和生产能力约束,同时考虑了调度约束,即工序顺序约束和工件在单机上的加工能力约束,保证了计划可行性。该模型为两层混合整数规划模型,对其求解综合运用了遗传算法和启发式规则,提出了混合启发式求解算法。最后,针对某机床厂多品种批量生产类型车间进行了实例应用,对车间零件月份作业计划进行分解,得到各工段单元零件周作业计划,确定了零件各周生产批量与投产顺序。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of Pilot Project of KIP of CAS, a feasibility study of hydrogen production system using biomass residues is conducted. This study is based on a process of oxygen-rich air gasification of biomass in a downdraft gasifier plus CO-shift. The capacity of this system is 6.4 t biomass/d. Applying this system, it is expected that an annual production of 480 billion N m(3) H-2 will be generated for domestic supply in China. The capital cost of the plant used in this study is 1328$/(N m(3)/h) H-2 out, and product supply cost is 0.15$/N m(3) H-2. The cost sensitivity analysis on this system tells that electricity and catalyst cost are the two most important factors to influence hydrogen production cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass gasification is an important method to obtain renewable hydrogen, However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/ N m(3) for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H-2/kg biomass. For biomass oxygen/steam gasification, the content of H-2 and CO reaches 63.27-72.56%, while the content Of H2 and CO gets to 52.19-63.31% for biomass air gasification. The ratio of H-2/CO for biomass oxygen/steam gasification reaches 0.70-0.90, which is lower than that of biomass air gasification, 1.06-1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O-2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O-2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O-2 was the main reason for H2S production. Maintaining the O-2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O-2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-celled female and male gametophytes of three Laminaria japonica strains were isolated, cultured and gametophyte clones were formed. A technique combining strain selection with sporeling raising by the use of these female and male gametophyte clones was studied. Experiments on 9 different crossing combinations was conducted in November of 1997 in Qingdao, P. R. China. The main economic characteristics, frond length and fresh weight, of sporophytes of different crossing combinations were measured. F-1 sporophytes of No. 2 showed a higher fresh weight and longer length, therefore, No. 2 (Wh860 + x Lid) was selected as a good combination. Its parental female and male gametophyte clones are being mass cultured for sporeling production. By this method, the time needed for strain selection was shortened from 5-6 to 2 years. As compared with the routine method of sporeling raising by the collection of zoospores, the time of sporeling raising of this method decrease by 50%, and the production cost is also reduced by 50%. It is believed that this method will be labour and time saving and a more economic way for strain selection and sporeling raising in L. japonica cultivation industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the continually increase both in the amount of wastewater disposal and in the treatment rate, more and more sewage sludge has been produced. An economic estimate was taken on the different sewage sludge disposal and treatment technologies, and led to the conclusion that compost is an effective way to make sewage sludge harmless, stable and resourceable. Normally, there are several ways to treat sewage sludge, such as landfill, compost, incineration and so on. These technologies will cost 300-1000 Y per ton of sludge. Among those ways, landfill is the cheapest one and operates easily, however, it just postpones the pollution instead of eventually eliminating the pollution; The amount of the sludge will reduce dramatically after incineration, while incineration will take a very high investment in the beginning, at the same time, it's very hard to maintain running; Sewage sludge will be resourceful after composting treantment, thus makes up the treatment cost, makes composting is the most economical way. Compost production is safe when correctly used, compost is a important way to treat sewage sludge. Oxygen is an important control factor in aerobic composting that has great effects on temperature and microorganisms. The gas gathering and transfering system of an online oxygen monitoring system for composting were bettermented to prolong the monitoring system's running period. The oxygen concentration changes in various aerobic composting stage were studied, and conclusions came to that oxygen concentration changes much faster in the oxygen concentration increasing stage than that in the declining stage; the better the aerobic condition is, the sooner the monitoring system starts to work. The minimal oxygen concentration during a ventilation cycle often falls at the beginning, then ascends in the composting period; at the same time, oxygen concentration changes fast in the early composting stage(temperature increasing stage), much slower in the middle stage(continouns thermophilic stage),and seldom changes in the late composting stage(temperature declining stage). With the help of the oxygen realtime-online monitoring system, oxygen concentrations was measured. During the composting period, water contents was analyzed after sampled. It's found that water contents (WC) and Oxygen concentration can both influence the composting process, and the control rule varies in the various composting stages. Essentially, the rule that water and oxygen control the composting process comes from water counterchecks the oxygen transferring to the composting substrate. The most influential factor to the WC and to the oxygen is the components in the composting pile. In the temperature increasing stage, seldom microorganisms exist in the composting pile with low activity, thus oxygen can meet with microorganisms' need, and WC is the dominant factor. In the high temperature (continouns thermophilic) stage, composting process is controlled by WC and oxygen, essentially by WC, at the same time, their influence somehow is not remarkable. In the temperature declining stage, WC and oxygen influence the composting process little. It's also found that the composting process will differ even if under the same components, thus to equably mix the components can avoid WC focusing in some place and let the composting pile to be aerobic. In one sentence, aerobic state is the most important factor in the composting process, suitable bulking material will be useful to the composting control.