13 resultados para coprecipitation method

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide-form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transparent 1 at% Nd3+:Y1.9La0.1O3 ceramics were fabricated with nanopowders prepared by carbonate coprecipitation method. The powder compacts were sintered in H-2 atmosphere at 1550 degrees C for 30 h. The Nd3+:Y1.9La0.1O3 ceramics display uniform grains of about 50 mu m and high transparency. The highest transmittance of the ceramics reaches 67%. The strongest absorption peak is in the wavelength of 820 nm with absorption cross section of 2.48 x 10(-20) cm(2). The absorption is still high at LD wavelength 806 nm with absorption cross section of 1.78 x 10(-20) cm(2) and broad full width at half maximum (FWHM) of about 6.3 nm. The strongest emission peak was centered at 1078 nm with large stimulated emission cross section of 9.63 x 10(-20) cm(2) and broad FWHM of about 7.8 nm. The broad absorption and emission bandwidth of Nd3+:y(1.9)La(0.1)O(3) transparent ceramics are favorable to achieve the miniaturized LD pumping apparatus and ultrashort modelocked pulse laser output, respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnS:Mn nanoparticles of the cubic zinc blende structure with the average sizes of about 3 nm were synthesized using a coprecipitation method and their optical and magnetic properties were investigated. Two emission bands were observed in doped nanoparitcles and attributed to the defect-related emission of ZnS and the Mn2+ emission, respectively. With the increase of Mn2+ concentration, the luminescence intensities of these two emission bands increased and the ZnS emission band shifted to lower energy. Based on the luminescence excitation spectra of Mn2+, the 3d(5) level structure of Mn2+ in ZnS nanoparticles is similar to that in bulk ZnS:Mn, regardless of Mn2+ concentration. Magnetic measurements showed that all the samples exhibit paramagnetic behavior and no antiferromagnetic interaction between Mn2+ ions exists, which are in contrast to bulk ZnS:Mn. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles prepared by chemical coprecipitation method in a magnetic field exhibit novel magnetic properties. The average particle diameter was about 2 nm and larger depending on the post annealing temperature. Magnetization measurements indicate that smaller nanoparticles are superparamagnetic above their respective blocking temperatures. In the blocked state, these nanoparticles exhibit interesting behaviors in the magnetic hysteresis measurements. Constricted, or wasp waisted with extremely narrow waist, hysteresis curves have been observed in the magnetization versus field sweeps. For larger nanoparticles, the room temperature hysteresis is typical of a ferromagnet with an open loop, but the loop closes at lower temperature. The novel magnetic behavior is attributed to the directional order of Co ions and vacancies in CoFe2O4 established during the coprecipitation of the nanoparticles under an applied field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Y2O3:Sm and Gd2O3:Sm powder phosphors were prepared by carbonate coprecipitation method. The purified crystalline phases of Y2O3:Sm and Gd2O3:SM were obtained at 600degreesC, and the crystallinity increases with increase in annealing temperature. Both samples contain aggregated phosphor particles. An energy transfer (ET) from Y2O3 and Gd2O3 hosts to sm(3+) has been observed, and the ET efficiency in the latter is higher than that in the former because an energy migration process like Gd3+-(Gd3+)(n)-Sm3+ has occurred in the latter. Furthermore, an upconversion luminescence from the (4)G(5/2) level of Sm3+ has been observed in both Y2O3 and Gd2O3 under the excitation of 936 nm infrared, whose mechanisms are proposed. Both the up and downconversion emission intensities of Sm3+ in Gd2O3 are stronger than those in Y2O3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferrocenebutyrate-intercalated layered double hydroxide (FcLDH) was prepared by the coprecipitation method and characterized by PXRD, FTIR, TEM and elemental analysis. FcLDH nanoparticles in deionized water were deposited onto the surface of graphite powder to yield graphite powder-supported FcLDH, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing the electroactive ferrocenyl group. Cyclic voltammetric study revealed that peak currents of the FcLDH-modified electrode were diffusion-con trolled in 0.1 mol l(-1) KCl aqueous solution. In addition, the formal potential of the modified electrode is related to the activity of chloride ion with a Nernst slope of 56 mV per decade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of poly(ether sulphone) (PES) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PES blends are mechanically compatible. SEM study revealed that the blends are not homogeneous and the polymers are immiscible on the segmental level. However, the dispersions of the blends are rather fine. The interfaces between the two phases are excellently bonded; PEI and PES appear to interact well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of phenolphthalein poly(ether ether ketone) (PEK-C) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). It was found that the tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PEK-C blends are mechanically compatible. SEM study shows no evidence of phase separation, supporting the idea that the blends are compatible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N-2 adsorption/desorption, XRD, H-2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni-0 particles with the average size lower, than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63 %. Compared with the Ni/Al2O3 catalysts, the Ni/La-Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni-Al mixed oxide phase was detailed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO hydrogenation to light alkenes was carried out on manganese promoted iron catalysts prepared by coprecipitation and sol-gel techniques. Addition of manganese in the range of 1-4 mol.% by means of coprecipitation could improve notably the percentage of C-2 (=) similar to C-4 (=) in the products, but it was not so efficient when the sol-gel method was employed. XRD and H-2-TPR measurements showed that the catalyst samples giving high C-2 (=) similar to C-4 (=) yields possessed ultra. ne particles in the form of pure alpha-(Fe1-xMnx)(2)O-3, and high quality in lowering the reduction temperature of the iron oxide. Furthermore, these samples displayed deep extent of carburization and different surface procedures to the others in the tests of Temperature Programmed Surface Carburization (TPSC). The different surface procedures of these samples were considered to have close relationship with the evolving of surface oxygen. It was also suggested that for the catalysts with high C-2 (=) similar to C-4 (=) yields, the turnover rate of the active site could be kept at a relatively high level due to the improved reducing and carburizing capabilities. Consequently, there would be a large number of sites for CO adsorption/dissociation and an enhanced carburization environment on the catalyst surface, so that the process of hydrogenation could be suppressed relatively to a low level. As a result, the percentage of the light alkenes in the products could be raised.