12 resultados para convección de Bénard

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

对高频振动影响下双层Marangoni-Bénard对流进行了线性稳定性理论分析,发现了高频振动对于Marangoni-Bénard对流不稳定性特征的双重影响,并分析了硅油与氟液(FC70)典型双层流体实验系统的不稳定性,其结果显示在一定振动运动或残余重力场下的两层流系统具有更复杂的不稳定现象.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oscillatory behaviour of the Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) regarding two combinations of two-layer fluid systems has been investigated theoretically and numerically. For the two-layer system of Silicone oil (10cSt) over Fluorinert (FC70), both linear instability analysis and 2D numerical simulation show that the instability of the system depends strongly on the depth ratio Hr = H1/H2 of the two-layer liquid. The oscillatory regime at the onset of R-M-B convection enlarges with reducing Γ = Ra/Ma values. In the two-layer system of Silicone oil (2cSt) over water, it loses its stability and onsets to steady convection at first, then the steady convection bifurcates to oscillatory convection with increasing Rayleigh number Ra. This behaviour was found through numerical simulation above the onset of steady convection in the case of r = 2.9, ε=(Ra-Ruc)/Rac = 1.0, and Hr = 0.5. Our findings are different from the previous study of the Rayleigh-Benard instability and show the strong effects of the thermocapillary force at the interface on the time-dependent oscillations at or after the onset of convection. We propose a secondary oscillatory instability mechanism to explain the experimental observation of Degen et al. [Phys. Rev. E, 57 (1998), 6647-6659].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

关于液层的Marangoni-Bénard不稳定性的研究中,现有文献中普遍采用的是单层流模型.本文建立了一种新的两层流模型,采用线性稳定性方法对带有蒸发界面的两层流的Marangoni-Bénard对流不稳定性进行了分析,得到了在不同蒸发量下临界Marangoni数与波数的关系,重点讨论了蒸发速率对汽液两层流系统Marangoni-Bénard不稳定性的影响.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用基于分子动理论的直接模拟Monte Carlo(DSMC)方法,研究了 Rayleigh-Bènard问题.计算中,上下平板表面温度之比固定为0.1.Kn=0.01时,随着Ra数的增大,大约在1700附近,流动从热传导状态转变为热对流状态,DSMC计算得到的下平板热流与Ra数的关系与经典实验和理论结果相符.Kn=0.05时,流动保持稳定的热传导状态,Ra数的增大并不能引发热对流现象.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) and flow patterns in the two-layer system of silicon oil 10cSt and Fluorinert FC70 liquids are studied theoretically and experimentally. Both linear instability analysis and 2D numerical simulation (A=L/H=10) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. Time-dependent oscillations arising at the onset of convection were investigated in a larger various range of two-layer depth ratios (Hr=H1/H2) from 0.2 to 5.0 for different total depth less than 12mm. Our results are different from the previous study on the Rayleig-B閚ard instability and show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. Primary experimental results of the critical instability parameters and the convective structure in the R-M-B convection have been obtained by using the digital particle image velocimetry (DPIV) system, and a good agreement in comparison with the results of numerical simulation was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用粒子图像测速技术(PIV)对两层流体B(en)ard-Marangoni对流进行了实验研究.研究了各种不同厚度比下的临界对流模式,同时研究了在温差变大时向超临界对流模式转化过程.实验结果表明,界面张力对各种对流模式的形成和转变具有重要的作用.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

关于蒸发液层的Rayleigh-Marangoni-Bénard不稳定性的研究中,早期文献中普遍采用的是单层流模型.近年来,一些学者采用两层流模型对蒸发稳定性进行了理论分析,有的文献中没有考虑蒸发率与饱和蒸汽压的耦合关系,所以得到的结果不能完全反应蒸发对系统稳定性的影响.本文建立了一种新的两层流模型,考虑了界面变形对系统稳定性的影响.采用线性稳定性方法对带有蒸发界面的两层流的Rayleigh-Marangoni-Bénard对流不稳定性进行了分析,得到了临界Marangoni数与波数的关系,重点讨论了蒸发系数以及重力对汽液两层流系统的不稳定性的影响.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we mainly deal with cigenvalue problems of non-self-adjoint operator. To begin with, the generalized Rayleigh variational principle, the idea of which was due to Morse and Feshbach, is examined in detail and proved more strictly in mathematics. Then, other three equivalent formulations of it are presented. While applying them to approximate calculation we find the condition under which the above variational method can be identified as the same with Galerkin's one. After that we illustrate the generalized variational principle by considering the hydrodynamic stability of plane Poiseuille flow and Bénard convection. Finally, the Rayleigh quotient method is extended to the cases of non-self-adjoint matrix in order to determine its strong eigenvalne in linear algebra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The convective instabilities in two or more superposed layers heated from below were studied extensively by many scientists due to several interfacial phenomena in nature and crystal growth application. Most works of them were performed mainly on the instability behaviors induced only by buoyancy force, especially on the oscillatory behavior at onset of convection (see Gershuni et. Al.(1982), Renardy et. Al. (1985,2000), Rasenat et. Al. (1989), and Colinet et. Al.(1994)) . But the unstable situations of multi-layer liquid convection will become more complicated and interesting while considering at the same time the buoyancy effect combined with thermocapillary effect. This is the case in the gravity reduced field or thin liquid layer where the thermocapillary effect is as important as buoyancy effect. The objective of this study was to investigate theoretically the interaction between Rayleigh-Bénard instability and pure Marangoni instability in a two-layer system, and more attention focus on the oscillatory instability both at the onset of convection and with increasing supercriticality. Oscillatory behavious of Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) and flow patterns are presented in the two-layer system of Silicon Oil (10cSt) over Fluorinert (FC70) for a larger various range of two-layer depth ratios (Hr=Hupper/Hdown) from 0.2 to 5.0. Both linear instability analysis and 2D numerical simulation (A=L/H=10) show that the instability of the system depends strongly on the depth ratio of two-layer liquids. The oscillatory instability regime at the onset of R-M-B convection are found theoretically in different regions of layer thickness ratio for different two-layer depth H=12,6,4,3mm. The neutral stability curve of the system displaces to right while we consider the Marangoni effect at the interface in comparison with the Rayleigh-Bénard instability of the system without the Marangoni effect (Ma=0). The numerical results show different regimes of the developing of convection in the two-layer system for different thickness ratios and some differences at the onset of pure Marangoni convection and the onset of Rayleigh-Bénard convections in two-layer liquids. Both traveling wave and standing wave were detected in the oscillatory instability regime due to the competition between Rayleigh-Bénard instability and Marangoni effect. The mechanism of the standing wave formation in the system is presented numerically in this paper. The oscillating standing wave results in the competition of the intermediate Marangoni cell and the Rayleigh convective rolls. In the two-layer system of 47v2 silicone oil over water, a transition form the steady instability to the oscillatory instability of the Rayleigh-Marangoni-Bénard Convection was found numerically above the onset of convection for ε=0.9 and Hr=0.5. We propose that this oscillatory mechanism is possible to explain the experimental observation of Degen et. Al.(1998). Experimental work in comparison with our theoretical findings on the two-layer Rayleigh-Marangoni-Bénard convection with thinner depth for H<6mm will be carried out in the near future, and more attention will be paid to new oscillatory instability regimes possible in the influence of thermocapillary effects on the competition of two-layer liquids

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaporative convection and instability give rise to both scientific and technological interests. Practically, a number of the industrial applications such as thin-film evaporators, boiling technologies and heat pipes concern with the evaporation process of which through the vapor-liquid interface the heat and mass transfer occur. From a physical viewpoint, one of interesting questions is the mechanisms of convection instability in thin-liquid layers induced by the coupling of evaporation phenomenon and Marangoni effect at the mass exchanged interface. Classical theories, including Rayleigh’s and Pearson’s, have only successfully explained convection in a liquid layer heated from below without evaporation. However these theories are unable to explain the convection in an evaporating thin layer, especially liquid layer is cooled from below. In present paper, a new two-sided model is put forward rather than the one-sided model in previous works. In previous works, the vapor is treated as passive gas and dynamics of vapor has been ignored. In this case, the vapor liquid system can be described by one-sided model. In our two-sided model, the dynamics of vapor should be considered. Linear instability analysis of the Marangoni-Bénard convection in the two-layer system with an evaporation interface is performed. We define a new evaporating Biot number which is different from the Biot number in one-sided model and obtain the curves of critical Marangoni number versus wave number. In our theoretical results, the Biot number and the evaporating velocity play a major role in the stability of the vapor-liquid system.