120 resultados para controlled pore glass

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Porous Zr-based bulk metallic glass (PMG) with unidirectional opening pores is prepared by electrochemical etching of tungsten wires of the W/bulk metallic glass (BMG) composites. The porosity and pore size can be controlled by adjusting the tungsten wires. The PMG showed no measurable loss in thermal stability as compared to the monolithic Zr-based BMG by water quenching and is more ductile and softer than the pore-free counterpart. The specific surface area of the PMGs is calculated to be 0.65, 3.96, and 10.54 m(2)/kg for 20, 60, and 80 vol % porosity, respectively. (c) 2007 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter demonstrates an alternative method to form gallium silicate glass ceramics using high-energy electron irradiation. Compared with glass ceramics obtained from the conventional thermal treatment method, the distribution and crystal sizes of the precipitated Ga2O3 nanoparticles are the same. An advantage of this method is that the spatial distribution of the precipitated nanoparticles can be easily controlled. However, optically active dopants Ni2+ ions do not participate in the precipitation during electron irradiation. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc oxide flower-like bunches were directly synthesized on indium-doped tin oxide (ITO) glass substrates through a simple chemical bath deposition process. By adjusting precursor concentration, other morphologies ( spindles and rods) were also obtained. All of them are hexagonal and single crystalline in nature and grow along the [ 0001] crystallographic direction. The possible growth mechanisms for these nano- and microcrystals were proposed. It was revealed that both the inherent highly anisotropic structure of ZnO and the precursor concentration play crucial roles in determining final morphologies of the products. In addition, vibrational properties of ZnO crystals with different morphologies were investigated by Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we report on surface crystallization phenomena and propose a solution for the fabrication of long and robust tellurite glass fibers. The bulk tellurite glasses of interest were prepared by melting and quenching techniques. Tellurite glass preforms and fibers were fabricated by suction casting and rod-in-tube drawing methods, respectively. The surfaces of the tellurite bulk glass samples and of the drawn fibers prepared under different controlled atmospheres were examined by X-ray diffraction. When the tellurite glass fibers were drawn in ambient air containing water vapor, four primary kinds of small crystals were found to appear on the fiber surface, alpha-TeO(2), gamma-TeO(2), Zn(2)Te(3)O(8) and Na(2)Zn(3)(CO(3))(4)center dot 3H(2)O. A mechanism for this surface crystallization is proposed and a solution described, using an ultra-dry oxygen gas atmosphere to effectively prevent surface crystallization during fiber drawing. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlled vertical drying deposition method was used to make high-quality single crystal close-packed colloidal films formed of different radii polystyrene latex spheres on glass substrates coming from a low concentration water suspension (0.1% volume fraction). Regardless of the spheres radii the film thickness was about 6.3 microns. However, cracks destroyed the crystalline film structure during the colloidal film growth. The effect of particle radius (85-215 nm range) on film cracking was systematically studied using in situ optical fracture monitoring. Primary parallel cracks run along the vertical growth direction, later followed by secondary branched cracks in-between the primary cracks due to residual water evaporation. Quantitative theoretical relationship between the cracks spacing and particles radius was derived and shows good agreement with experimental observations. Normalized cracks spacing is related to a reciprocal ratio of the dimensionless particle radius.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs-R6G) were assembled on glass and used as the seeds to in situ grow silver-coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs-R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV-visible spectroscopy. More importantly, the obtained silver-coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs-R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs-R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through a facile solvothermal route using zinc chloride and thiourea as reactants, wurtzite ZnS and its precursor ZnS center dot (en)(0.5) (en = ethylenediamine) with various morphologies and sizes were grown, which were characterized by XRD, SEM, TEM and N-2 adsorption and so on. The phase evolution, composition and morphologies of the products are highly dependent on the concentration of en. By keeping the en-water volume ratio at 1/2 to 1, the nanostripes-flower or nanorod-spheric wurtzite ZnS were easily obtained under 120 degrees C for 6-24 h, which possess relatively higher specific surface area and larger total pore volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass (BMG) upon crystallization are investigated by the ultrasonic method, x-ray diffraction, density measurement, and differential scanning calorimetry. The elastic constants and Debye temperature of the BMG are obtained as a function of annealing temperature. Anomalous changes in ultrasonic velocities, elastic constants, and density are observed between 600–750 K, corresponding to the formation of metastable phases as an intermediate product in the crystallization process. The changes in acoustic velocities, elastic constants, density, and Debye temperature of the BMG relative to its fully crystallized state are much smaller, compared with those of other known BMGs, the differences being attributed to the microstructural feature of the BMG.