4 resultados para confluence

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection performance regarding stationary acoustic monitoring of Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis was compared to visual observations. Three stereo acoustic data loggers (A-tag) were placed at different locations near the confluence of Poyang Lake and the Yangtze River, China. The presence and number of porpoises were determined acoustically and visually during each 1-min time bin. On average, porpoises were acoustically detected 81.7 +/- 9.7% of the entire effective observation time, while the presence of animals was confirmed visually 12.7 +/- 11.0% of the entire time. Acoustic monitoring indicated areas of high and low porpoise densities that were consistent with visual observations. The direction of porpoise movement was monitored using stereo beams, which agreed with visual observations at all monitoring locations. Acoustic and visual methods could determine group sizes up to five and ten individuals, respectively. While the acoustic monitoring method had the advantage of high detection probability, it tended to underestimate group size due to the limited resolution of sound source bearing angles. The stationary acoustic monitoring method proved to be a practical and useful alternative to visual observations, especially in areas of low porpoise density for long-term monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we describe composite scaffolds composed of synthetic and natural materials with physicochemical properties suitable for tissue engineering applications. Fibrous scaffolds were co-electrospun from a blend of a synthetic biodegradable polymer (poly(lactic-co-glycolic acid), PLGA, 10% solution) and two natural proteins, gelatin (denatured collagen, 8% solution) and (x-elastin (20% solution) at ratios of 3:1:2 and 2:2:2 (v/v/v). The resulting PLGA-gelatin-elastin (PGE) fibers were homogeneous in appearance with an average diameter of 380 80 mn, which was considerably smaller than fibers made under identical conditions from the starting materials (PLGA, 780 +/- 200 nm; gelatin, 447 +/- 1.23 nm; elastin, 1060 170 nm). Upon hydration, PGE fibers swelled to an average fiber diameter of 963 +/- 132 nm, but did not disintegrate. Importantly, PGE scaffolds were stable in an aqueous environment without crosslinking, and were more elastic than those made of pure elastin fibers. To investigate the cytocompatibility of PGE, we cultured H9c2 rat cardiac myoblasts and rat bone marrow stromal cells (BMSCs) on fibrous PGE scaffolds. We found that myoblasts grew equally as well or slightly better on the scaffolds than on tissue-culture plastic. Microscopic evaluation confirmed that myoblasts reached confluence on the scaffold surfaces while simultaneously growing into the scaffolds.