51 resultados para computational fluid dynamics (CFD)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pipeline with a bypass is widely used for the pneumatic conveying of material. The double-tube-socket (DTS (R)) technology, which uses a special inner bypass, represents the current state of the art. Here, a new methodology is proposed based on the use of computational fluid dynamics (CFD) to predict the energy consumption of DTS conveying. The predicted results are in good agreement with those from pilot-scale experiments. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用计算流体力学(Computational Fluid Dynamics,CFD)和颗粒离散元(Discrete Element Method,DEM)耦合的方法模拟三维风沙运动,并且将三维模拟结果和二维模拟结果以及实验结果进行了对比.计算结果表明:沙粒水平速度随着高度按幂函数规律增加,沙床表面附近沙粒撞击和起跳速度的概率分布均可用对数正态函数描述,沙粒撞击和起跳角度的概率分布均可用指数函数描述,沙粒水平速度,展向速度和垂直速度在不同高度处的概率分布可分别用对数正态分布,正态分布和正态分布表示.与二维计算结果的分析对比表明:二维计算得到的颗粒速度的分布规律和三维计算结果类似,但二维计算的颗粒表观密度明显偏大,由此导致输沙量计算偏大.和实验结果的对比表明:三维计算得到的颗粒速度概率分布与实验基本保持一致

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method based on the computational fluid dynamics (CFD) is presented for a flexible waverider's design. The generating bodies of this method could be any cones. In addition, either the leading edge or the profile of the scramjet's inlet is used as the waverider's definition curve, parameterized by the quadric function, the sigmoid function or the B-spline function. Furthermore, several numerical examples are carried out to validate the method and the relevant codes. The CFD results of the configurations show that all the designs are successful. Moreover, primary suggestions are proposed for practical design by comparing the geometrical and aerodynamic performances of the cone-derived waveriders at Mach 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chemical oxygen iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow around moving boundary is ubiquitous in engineering applications. To increse the efficienly of the algorithm to handle moving boundaries is still a major challenge in Computational Fluid Dynamics (CFD). The Chimera grid method is one type of method to handle moving boundaries. A concept of domain de-composition has been proposed in this paper. In this method, sub-domains are meshed independently and governing equations are also solved separately on them. The Chimera grid method was originally used only on structured (curvilinear) meshes. However, in a problem which involves both moving boundary and complex geometry, the number of sub-domains required in a traditional (structured) Chimera method becomes fairly large. Thus the time required in the interior boundary locating, link-building and data exchanging also increases. The use of unstructured Chimera grid can reduce the time consumption significantly by the reduction of domain(block) number. Generally speaking, unstructured Chimera grid method has not been developed. In this paper, a well-known pressure correction scheme - SIMPLEC is modified and implemented on unstructured Chimera mesh. A new interpolation scheme regarding the pressure correction is proposed to prevent the possible decoupling of pressure. A moving-mesh finite volume approach is implemented in an inertial reference frame. This approach is then used to compute incompressible flow around a rotating circular and elliptic cylinder. These numerical examples demonstrate the capability of the proposed scheme in handling moving boundaries. The numerical results are in good agreement with other experimental and computational data in literature. The method proposed in this paper can be efficiently applied to more challenge cases such as free-falling objects or heavy particles in fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用计算流体动力学(CFD)方法对太阳能烟囱发电装置进行数值模拟,得到装置内部的温度场、速度场、压力场等分布情况。对集热棚的各种几何和物理参数进行研究和分析。结果表明,集热棚直径、太阳辐照强度、覆盖材料的透明度等诸多参数对系统效率有直接而重要的影响。


Some influence factors on efficiency in solar chimney power plant are studied by using the Computational Fluid DynamicsCFD) method in the paper. The temperature,velocity,pressure of the air are obtained. The study shows the diameter of chimney, solar radiation, transparency of the cover are the most important influence factors, The purpose is to deliver some advice for application and development of solar chimney generation system in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of pulverized-coal combustor, called "Wall-Protecting-Jets Combustor" (hereafter, WPJC has been proposed, designed and studied with both CFD (Computational Fluid Dynamics) and experimental methods. The WPJC is based on a novel concept in which all inlet jets are along the combustor wall. Pilot combustion experiments were conducted to investigate the combustion performance of WPJC. Two-phase flows and pulverized-coal combustion were simulated to study the mechanism of),WPJC using the commercial software FLUENT. The results show that the WPJC has many remarkable advantages: wall-protection by the cold jets without the use of refractory materials; low-temperature and three-stage combustion with low NOx emission; negligible ash/slag-deposition; multiple functions with convenient switching between them; effective adjustment of the combustion intensity and the ignition position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solutions of or(R) given by two different methods (Samsonov et al., 2003; and Lu et al., 2005) are compared with the result that they are coincident closely (the difference is within 4%). We conclude that it is necessary to consider the Tolman correction in the calculation of fluid dynamics in carbon nanotubes. Although our conclusion is the same as that of Prylutskyy et al. (2005), the sign of our Tolman correction is opposite to theirs, and the difference can be attributed to the errors appeared in the paper of Prylutskyy et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional (2-D) vortex-induced vibration (VIV) prediction model for high aspect ratio (LID) riser subjected to uniform and sheared flow is studied in this paper. The nonlinear structure equations are considered. The near wake dynamics describing the fluctuating nature of vortex shedding is modeled using classical van der Pol equation. A new approach was applied to calibrate the empirical parameters in the wake oscillator model. Compared the predicted results with the experimental data and computational fluid dynamic (CFD) results. Good agreements are observed. It can be concluded that the present model can be used as simple computational tool in predicting some aspects of VIV of long flexible structures. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simulation of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approximations on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are presented.