216 resultados para cobalt 60
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The cobalt ferrites with chemical composition Co1+xZnxFe2-2xO4 (r=0.0, 0.1, 0.2, 0.4) were obtained with conventional solid reaction. The ZnO-doped samples have lower lattice constant than CoFe2O4 by adjusting Co ions to the octahedral sites. The results show that doping ZnO could extremely improve the magnetic properties. In comparison with pure CoFe2O4, the little ZnO-doped sample has higher permeability and much lower coercivity at the condition of a little decrease of magnetization saturation. Sample with x=0.1 shows evident magnetostrictive effect at the magnetic field of 30-60 mT while pure cobalt ferrite sample does not, though the saturation magnetostriction decreases. These indicate that ZnO-doping improves the magnetostrictive sensitivity of the cobalt ferrites and have potential applications in magnetoelectric devices and magnetic detector.
Resumo:
The cobalt ferrites with chemical composition Co1+xZnxFe2-2xO4 (r=0.0, 0.1, 0.2, 0.4) were obtained with conventional solid reaction. The ZnO-doped samples have lower lattice constant than CoFe2O4 by adjusting Co ions to the octahedral sites. The results show that doping ZnO could extremely improve the magnetic properties. In comparison with pure CoFe2O4, the little ZnO-doped sample has higher permeability and much lower coercivity at the condition of a little decrease of magnetization saturation. Sample with x=0.1 shows evident magnetostrictive effect at the magnetic field of 30-60 mT while pure cobalt ferrite sample does not, though the saturation magnetostriction decreases. These indicate that ZnO-doping improves the magnetostrictive sensitivity of the cobalt ferrites and have potential applications in magnetoelectric devices and magnetic detector.
Resumo:
Both coordination and hydrogen bonds contribute to networking in the supramolecular title compound, [Co(C6H6NO3S)(C12H8N2)(H2O)(3)]Cl, which contains a discrete [Co(C6H6NO3S)(C12H8N2)(H2O)(3)](+) complex cation, formed by one 4-aminobenzenesulfonate ligand, one 1,10-phenanthroline ligand and three coordinated water molecules, together with one uncoordinated chloride anion. These discrete cations and chloride anions are connected by hydrogen-bonding interactions into a two-dimensional supramolecular motif. Further hydrogen-bonding interactions consolidate the structural architecture and extend the two-dimensional supramolecular structure into a three-dimensional network.
Resumo:
The interaction of DNA with Tris(1,10-phenanthroline) cobalt(III) was studied by means of atomic force microscopy. Changes in the morphologies of DNA complex in the presence of ethanol may well indicate the crucial role of electrostatic force in causing DNA condensation. With the increase of the concentration of ethanol, electrostatic interaction is enhanced corresponding to a lower dielectric constant. Counterions condense along the sugar phosphate backbone of DNA when e is lowered and the phosphate charge density can thus be neutralized to the level of DNA condensation. Electroanalytical measurement of DNA condensed with Co(phen)(3)(3+) in ethanol solution indicated that intercalating reaction remains existing. According to both the microscopic and spectroscopic results, it can be found that no secondary structure transition occurs upon DNA condensing. B-A conformation transition takes place at more than 60% ethanol solution.
Resumo:
The structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass (BMG) upon crystallization are investigated by the ultrasonic method, x-ray diffraction, density measurement, and differential scanning calorimetry. The elastic constants and Debye temperature of the BMG are obtained as a function of annealing temperature. Anomalous changes in ultrasonic velocities, elastic constants, and density are observed between 600–750 K, corresponding to the formation of metastable phases as an intermediate product in the crystallization process. The changes in acoustic velocities, elastic constants, density, and Debye temperature of the BMG relative to its fully crystallized state are much smaller, compared with those of other known BMGs, the differences being attributed to the microstructural feature of the BMG.
Resumo:
Mammalian cells subjected to conditions of spaceflight and the microgravity environment ofspace; manifest a number of alterations in structure and function. Among the most notable changes incells flown on the Space Shuttle are reduced growth activation and decline in growth rate in the totalpopulation. Other changes include chromosomal aberrations, inhibited locomotion, alteredcytokine production, changes in PKC distribution, and increased apoptos.
Resumo:
利用材料测试系统(MTS)、X-Ray 衍射(XRD)和扫描电镜(SEM)等手段研究了Nd 基大块金属玻璃的变形行为和断裂特征。Nd 基大块金属玻璃样品在室温下是脆性断裂,大约在500 K 时变形模式从非均匀变形转变为均匀变形,在523 K 以上表现出显著的塑性变形。在5×10-4 m/s 的应变速率下,这种Nd 基大块金属玻璃材料在523 K~600 K 之间出现明显的屈服应力下降现象,随后进入1 种稳定的粘性流动状态,而且这种屈服下降现象与温度和应变速率有关。这种在过冷液相区的变形行为与其他大块金属玻璃变形特征相似。合金的这种塑性变形行为表明了其存在稳定的过冷液相区,同时对其变形行为的研究有助于进一步了解Nd 基大块金属玻璃的反常热稳定性。
Resumo:
The deformation microstructure of face-centered cubic cobalt subjected to surface mechanical attrition treatment was studied as a function of strain levels. Strain-induced gamma --> epsilon transformation and twinning deformation were evidenced by transmission electron microscopy and were found to progress continuously in ultrafine and nanocrystalline grains as the strain increased.
Resumo:
The microstructural evolution during surface mechanical attrition treatment of cobalt (a mixture of hexagonal close packed (hep) and face-centered cubic (fcc) phases) was investigated. In order to reveal the mechanism of grain refinement and strain accommodation. The microstructure was systematically characterized by both cross-sectional and planar-view transmission electron microscopy. In the hcp phase, the process of grain refinement. Accompanied by an increase in strain imposed in the surface layer. Involved: (1) the onset of 110 111 deformation twinning, (2) the operation of (1 120) 110 1 0} prismatic and (1 120) (000 1) basal slip, leading to the formation of low-angle dislocation boundaries, and (3) the successive subdivision of grains to a finer and finer scale. Ressulting in the formation of highly misoriented nanocrystalline grains. Moreover. The formation of nanocrystalliies at the grain boundary and triple junction was also observed to occur concurrently with straining. By contrast. The fec phase accommodated strain in a sequence as follows: (1) slip of dislocations by forming intersecting planar arrays of dislocations, (2) {1 1 1} deformation twinning, and (3) the gamma(fcc) --> epsilon(hcp) martensitic phase transformation. The mechanism of grain refinement was interpreted in terms of the structural subdivision of grains together with dynamic recrystallization occurring in the hep phase and the gamma --> E: martensitic transformation in the fcc phase as well.
Resumo:
The nanocrystalline (nc) formation was studied in cobalt (a mixture of c (hexagonal close packed) and gamma (face-centered cubic) phases) subjected to surface mechanical attrition treatment. Electron microscopy revealed the operation of {10(1) over bar 0}< 11(2) over bar 0 > prismatic and {0001}< 11(2) over bar 0 > basal slip in the E phase, leading to the successive subdivision of grains to nanoscale. In particular, the dislocation splitting into the stacking faults was observed to occur in ultrafine and nc grains. By contrast, the planar dislocation arrays, twins and martensites were evidenced in the gamma phase. The strain-induced gamma ->epsilon martensitic transformation was found to progress continuously in ultrafine and nc grains as the strain increased. The nc formation in the gamma phase was interpreted in terms of the martensitic transformation and twinning.
Resumo:
This paper addresses the explosive consolidation of amorphous cobalt-based alloys. Using the experimental setup introduced in the present paper, specimens with high compact density, excellent magnetic properties and great wearability have been made. In comparison with permalloy and ferrite, the present specimens exhibit superior magnetic properties. Therefore, the compact is deemed as being a promising material for magnetic recording heads.
Resumo:
Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
<正> 一、问题的提出推土机车架是按装推土机各部件(发动机、减速器、后桥和驾驶座等)的基础。车架除承受这些部件的重量以及由此引起的动负荷外,还承受相当大的履带工作张力以及地面作用于车轮正向和侧向的阻力。因此在实际工作中,车架各杆件均处于拉、扭、弯、压同时作用的这一复杂而又繁重的工作载荷条件下。由于车架是推土机的基础,不管车架是变形还是损坏都会直接影响到推土机的正常使用。因此,必须保证车架有足够的强度和刚度。
Resumo:
利用胺基与C60 分子的加成反应 ,在 3 胺基丙基 三乙氧基硅烷 (APS)的自组装单分子膜 (SAMs)表面上成功的制备了与基底化学键结合的C60 SAMs。其表面水接触角约为 76° ,膜厚约为 1.15nm ,AFM形貌像显示其表面光滑、均匀 ,基本不含缺陷。摩擦学结果表明 ,APS自组装单分子膜由于其分子链短 ,膜的有序性差 ,表面颗粒聚集物及“针孔”等缺陷多 ,而不具有润滑作用。当在其上形成C60 单分子层膜后 ,表现出优异的摩擦学性能 ,摩擦系数约为 0 .0 9~ 0 .13,在给定实验条件下抗磨损寿命大于 10 0 0 0次 ,有望作为微型机械的边界润滑材料使用。
Resumo:
采用微重力落管法制得了Nd6 0 Al1 0 Fe2 0 Co1 0 非晶薄片 .利用X衍射 (XRD)分析了Nd6 0 Al1 0 Fe2 0 Co1 0 非晶薄片的结构特征 .用振动样品磁强计 (VSM)研究了其磁性能 .结果表明微重力落管法制得的非晶薄片具有硬磁性 ,与快速非平衡凝固(如甩带法 )试样的XRD相比 ,尽管其曲线还是较为典型的非晶相漫散衍射峰 ,但已有少量的不规则的类似晶化的突起小峰 ,表明该非晶片中已经有微量晶态合金或者细小晶粒析出 ,初步分析可能是生成了类似于亚稳A1 相的短程有序原子团簇或者是较大尺寸的纳米晶 ,这种短程有序原子团簇或纳米晶是Nd6 0 Al1 0 Fe2 0 Co1 0 非晶薄片显示硬磁性的主要原因