142 resultados para coalbed natural gas
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOz concentration is reduced. The same result can be obtained from chemical equilibrium analysis.
Resumo:
Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boiloff gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.
Resumo:
This paper simulates a one-dimensional physical model of natural gas production from hydrate dissociation in a reservoir by depressurization. According to the principles of solid hydrate decomposition in stratum and flow of natural gas in porous medium, the pressure governing equations for both gas zone and hydrate zone are set up based on the physical production model. Using the approximation reported by N. N. Verigin et al. (1980), the nonlinear governing equations are simplified and the self-similar solutions are obtained. Through calculation, for different reservoir parameters, the distribution characters of pressure are analyzed. The decline trend of natural gas production rate with time is also studied. The simulation results show that production of natural gas from a hydrate reservoir is very sensitive to several reservoir parameters, such as wellbore pressure and stratum porosity and permeability.
Resumo:
Natural gas hydrate (NGH) reservoirs have been considered as a substantial future clean energy resource and how to recover gas from these reservoirs feasibly and economically is very important. Microwave heating will be taken as a promising method for gas production from gas hydrates for its advantages of fast heat transfer and flexible application. In this work, we investigate the formation/decomposition behavior of natural gas hydrate with different power of microwave (2450MHZ), preliminarily analyze the impact of microwave on phase equilibrium of gas hydrate,and make calculation based on van der Waals-Platteeuw model. It is found that microwave of a certain amount of power can reduce the induction time and sub-cooling degree of NGH formation, e.g., 20W microwave power can lead to a decrease of about 3A degrees C in sub-cooling degree and the shortening of induction time from 4.5 hours to 1.3 hours. Microwave can make rapid NGH decomposition, and water from NGH decomposition accelerates the decomposition of NGH with the decomposition of NGH. Under the same pressure, microwave can increase NGH phase equilibrium temperature. Different dielectric properties of each composition of NGH may cause a distinct difference in temperature in the process of NGH decomposition. Therefore, NGH decomposition by microwave can be affected by many factors.
Resumo:
An industrial scale dehydration process based on hollow fiber membranes for lowering the dew point of natural gas is described in this paper. A pilot test with the feed flux scale of 12x10(4) Nm(3)/d was carried out. Dew points of -8 degreesC-13 degreesC at a gas transport pressure in the pipeline of 4.6M Pa and methane recovery of more than 98% were attained. The water vapor content of the product gas could be maintained around 0.01 vol% during a continuous run of about 700 hours. The effects of feed flux and operation pressure on methane recovery and water vapor content were also investigated. Additionally, some auxiliary technologies, such as a full-time engine using natural gas as fuel and the utilization of vent gas in the process, are also discussed. A small amount of the vent gas from the system was used as a fuel for an engine to drive vacuum pumps, and the heat expelled from the engine was used to warm up the natural gas feed. The whole system can be operated in a self-sustainable manner from an energy point of view, and has a relatively high efficiency in the utilization of natural gas.