3 resultados para co-creative media
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Evolution of localized damage zone is a key to catastrophic rupture in heterogeneous materials. In the present article, the evolutions of strain fields of rock specimens are investigated experimentally. The observed evolution of fluctuations and autocorrelations of strain fields under uniaxial compression demonstrates that the localization of deformation always appears ahead of catastrophic rupture. In particular, the localization evolves pronouncedly with increasing deformation in the rock experiments. By means of the definition of the zone with high strain rate and likely damage localization, it is found that the size of the localized zone decreases from the sample size at peak load to an eventual value. Actually, the deformation field beyond peak load is bound to suffer bifurcation, namely an elastic unloading part and a continuing but localized damage part will co-exist in series in a specimen. To describe this continuous bifurcation and localization process observed in experiments, a model on continuum mechanics is developed. The model can explain why the decreasing width of localized zone can lead stable deformation to unstable, but it still has not provided the complete equations governing the evolution of the localized zone.
Resumo:
Poly (aniline-co-anthranilic acid) (PANANA) nanorods in bundles was prepared successfully in an alcohol/aqueous media without assistance of an), other kinds of acids. Anthranilic acid played all roles of monomer, acid-media provider, and dopant in the reaction system, and ammonium persulfate (APS) served as the oxidant. The morphologies of PANANA nanorods in bundles were investigated by scanning electron microscopy (SEM). Influences of the monomer molar ratio on the resulting morphology were investigated. Moreover the formation mechanism of the nanostructured copolymer was proposed. FT-IR. UV-vis and X-ray diffraction (XRD) measurements were used to confirm the molecular and electrical structure of the self-doped PANANA. The intrinsic properties, such as conductivity, electrochemical redox activity and room-temperature solubility of the resulting copolymer were explored.
Resumo:
Electrochemical reactions of cyanocobalamin, CN-Cbl[Co(III)], were studied at glassy carbon electrodes in acidic media by means of cyclic voltammetry and differential pulse polarography. It was found that in pH 0 solution, CN-Cbl[Co(III)] exists mainly in the base-off form, {CN-Cbl[Co(III)]}(base-off). It can undergo a one-electron reduction and a follow-up chemical reaction to form {H2O-Cbl[Co(II)]}(base-off). The rate-constant k of the follow-up decyanation reaction is 0.022 s(-1). {H2O-Cbl[Co(II)]}(base-off) is further reduced to obtain H2O-Cbl[Co(I)]. (C) 1997 Elsevier Science S.A.