91 resultados para cis-4-decenoic acid
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This work presents the salen-Co(II) complex catalyzed enantioselective iodolactonizations of various 4-pentenoic acid derivatives with good enantioselectivities (up to 83% ee).
Resumo:
Microcystins (MCs) are a family of related cyclic hepatotoxic heptapeptides, of which more than 70 types have been identified. The chemically unique nature of the C20 beta-amino acid, (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca4,6-dienoic acid (Adda), portion of the MCs has been exploited to develop a strategy to analyze the entirety. Oxidation of MCs causes the cleavage of MC Adda to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB). In the present study, we investigated the kinetics of MMPB produced by oxidation of the most-often-studied MC variant, MC-LR (L = leucine, R = arginine), with permanganate-periodate. This investigation allowed insight regarding the influence of the reaction conditions (concentration of the reactants, temperature, and pH) on the conversion rate. The results indicated that the reaction was second order overall and first order with respect to both permanganate and MC-LR. The second-order rate constant ranged from 0.66 to 1.35 M/s at temperatures from 10 to 30 degrees C, and the activation energy was 24.44 kJ/mol. The rates of MMPB production can be accelerated through increasing reaction temperature and oxidant concentration, and sufficient periodate is necessary for the formation of MMPB. The initial reaction rate under alkaline and neutral conditions is higher than that under acidic conditions, but the former decreases faster than the latter except under weakly acidic conditions. These results provided new insight concerning selection of the permanganate-periodate concentration, pH, and temperature needed for the oxidation of MCs with a high and stable yield of MMPB.
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1 M KCl aqueous Solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)(6)(3-) in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal group's charge state, based on which the surface pK(a) values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.
Resumo:
Through layer-by-layer assembly, a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu. or Zn) were first successfully immobilized on a 4-aminobenzoic acid modified glassy carbon electrode surface. The electrochemical behaviors of these polyoxometalates were investigated. They exhibit some special properties in the films different from those in homogeneous aqueous solution. The Cu-centered reaction mechanism in the ZnW11Cu multilayer film was described. The electrocatalytic behaviors of these multilayer film electrodes to the reduction of H2O2 and BrO3- were comparatively studied.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy measurement proves the presence of 4-carboxylphenylamine monolayer on the GCE. The redox responses of various electroactive probes were investigated on the 4-ABA-modified GCE. Electron transfer to Fe(CN)(6)(3-) in solutions of various pHs was studied by both cyclic voltammetry and electrochemical impedance analysis on the modified electrode. Changes in the solution pH value result in the variation of the terminal group charge state, based on which surface pK(a) values are estimated. The 4-ABA-modified GCE was used as a suitable charged substrate to fabricate polyoxometalates-consisting (POM-consisting) monolayer and multilayer films through layer-by-layer assembly based on electrostatic attraction. Cyclic voltammetry shows the uniform growth of these three-dimensional multilayer films. Taking K10H3[Pr-(SiMo7W4O39)(2)]. H2O (abbreviated as Pr(SiMo7W4)(2)), for example, the preparation and electrochemical behavior of its monolayer and multilayer film had been investigated in detail. This modification strategy is proven to be a general one suitable for anchoring many kinds of POMs on the 4-ABA-modified GCE.
Resumo:
A novel 4-aminobenzoic acid (4-ABA) monolayer film is formed on glassy carbon electrode (GCE) by amino cation radical method. Silicotungstic heteropolyanion (SiW12O404-, denoted as SiW12)-containing multilayer films have been fabricated on the 4-ABA modified GCE surface by alternate deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/+) (denoted as QPVP-Os). Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and X-ray reflectivity (XR) have been used to characterise the as-prepared multilayer films. It is proved that the multilayer films are uniform and stable. The average thickness for a bilayer of QPVP-Os/SiW12 in the multilayer film is 30.2 Angstrom. The electrocatalytic activities of the multilayer films have been investigated on the reduction of three substrates of important analytical interests, HNO2, BrO3- and H2O2. Especially, the influence of layer number of the multilayer films on the electrocatalytic reduction of HNO2 has been investigated in detail. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we studied the reactions of both potassium ferricyanide and hexaammineruthenium(III) chloride at a 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) by scanning electrochemical microscopy (SECM) in different pH solutions. The surface of the modified electrode has carboxyl groups, the dissociation of which are strongly dependent upon the solution pH values. The rate constant kb of the oxidation of ferrocyanide on the modified electrode can be obtained by fitting the experimental tip current-distance (I-T-d) curves with the theoretical values. The surface pK(a) of the 4-ABA modified GCE was estimated from the plot of standard rate constant k(o) versus the solution pH and is equal to 3.2, which is in good agreement with the reported result. The SECM approach curves for Ru(NH3)(6)(3+) both on the bare and the modified electrodes show similar diffusion control processes. These results can be explained by the electrostatic interactions between the modified electrode surface and the model compounds with different charges. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
The (1) H and C-13 NMR spectra are reported for Ru(4, 4'-dimethyl-2,2'-bipyridene)(2) (2,2'-bipyridine-4,4'-dicarboxylic acid) (PF6)(2) that can be used as a new electrochemiluminescent probe in immunoasssay and nucleic acid hybridization assay. Because of the effect ol:Ru atom ligands and complex steric configuration, it is difficult to attribute spectra of the title molecular, By using 2D (1) H-(1) H COSY and (1) H-C-13 HETCOR method, the proton and C-13 NMR spectra are assigned completely, which provides a satisfactory method to quantitative and qualitative, analysis of the title moleculer in the further study.
Resumo:
The H-1 and C-13 nuclear magnetic resonance(NMR) spectra are reported for bis(2, 2'-bipyridine)(2, 2'-bipyridine-,4,4'-dicarboxylic acid) ruthenium(II) hexafluoruphosphate that has been used as a tagged molecule of electrochemiluminescent immunoassay. Because of the effect of Ru atom on ligands, it is difficult to assign its NMR spectra. BS' means of two dimensional H-1-H-1 COSY and H-1-C-13 COSY techniques, the H-1 and C-13 NMR spectra of bis (2, 2'-bipylidine) (2, 2'-bipyridine-4, 4-dicarboxylic acid) ruthenium(II) hexafluorophosphate are assigned completely. This provides a basis for NMR characterization of the nerv similar tagged molecules.
Resumo:
Synthesis, IR spectra, UV-vis spectra and photophysical properties of Gd3+, Eu3+, Tb3+ complexes with 3,4-furandicarboxylic acid and 1,10-phenanthroline are reported. Intramolecular energy transfer process for these complexes is discussed in detail. It is found that the intramolecular energy transfer efficiency depends on the relative positions between the resonance energy levels of the central rare earth ions and the lowest triplet state energies of ligands.
Resumo:
The self-assembled monolayer of cystamine was prepared on gold electrode and 3,4-dihydroxybenzoic acid (DHBA) was electrochemically deposited on cystamine surface as a functional group by electrostatic adsorption, namely, molecular deposition. It shows that the MD/SAM structure has a higher stability, and E-1/2 of the DBAH in MD/SAM shifts more negative than that of on naked gold electrode, The n-decanethiol was also used to fill defects in MD/SAM, it results in much better cyclic voltermmetric behavior.
Resumo:
The responses to rapid application of gamma-aminobutyric acid (GABA) and the GABA receptor characteristics of MTXO neurosecretory cells in the eyestalks of Chinese mitten-handed crab (Eriocheir sinensis) were examined by whole-cell patch clamp. Under current clamp mode, the depolarization and hyperpolarization were evoked from the three types of neurosecretory cells in response to the GABA (0.1 mmol/L) depending on the Nernst Cl- potential. Under voltage clamp mode, the inward Cl- channel currents (I-GABA) were resolved from all three types of neurosecretory cells in response to GABA (0.01similar to5 mmol/L). The GABA currents were activated within 1 200 ms and peaked within 800 ms. No obviously desensitization was observed during GABA application. The dose-response curve showed usual S-shape, with a just-discernible effect at 0.01 mmol/L and near-saturation at 0.5 mmol/L. The GABA currents had reversal potentials that followed Nernst Cl- potentials when [Cl-] was varied. The pharmacological results revealed that the GABA receptor of the crab neurosecretory cells was sensitive to the Cl- channel blockers picrotoxin and niflumic acid (0.5 mmol/L), insensitive to GABA(A) receptor antagonist bicuculline and GABA(C) receptor agonist cis-4-aminocrotonic acid (CACA 1 mmol/L) and trans-4-aminocrotonic (TACA 1 mmol/L).
Resumo:
Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.
Resumo:
The antialgal activities of benzoic acid, 2-hydroxybenzoic acid (salicylic acid), 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid and 3,4,5-trihydroxybenzoic acid (gallic acid) were studied on the growth of two strains of Microcystis aeruginosa (toxic FACHB 942 and non-toxic 469). The results showed that the sequence of 50% growth inhibition concentration (ErC50) of 6- compounds for both strains of M. aeruginosa followed the same order: gallic acid > 3,5-dihydroxybenzoic acid > 4-hydroxybenzoic acid > salicylic acid > 3-hydroxybenzoic acid > benzoic acid. The position and the numbers of hydroxy groups between the hydroxy group and carboxyl influenced the antialgal effects of phenolic acids. We also investigated the joint effects of benzoic acid, 4-hydroxybenzoic acid and 3,4,5-trihydroxybenzoic acid on the growth of M. aeruginosa ( toxic FACHB 942). The mixture of phenolic allelochemicals showed the synergistic effects.