106 resultados para chromosome condensation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Aim: To determine whether the number of non-rejoining G2-chromatid breaks can predict the radiosensitivity of human cell lines. Methods: Cell lines of human ovary carcinoma cells (HO8910), human hepatoma cells (HepG2) and liver cells (L02) were irradiated with a range of doses and assessed both of cell survival and non-rejoining G2-chromatid breaks at 24 h after irradiation. Cell survival was documented by a colony assay. Non-rejoining G2-chromatid breaks were measured by counting the number of non-rejoining G2 chromatid breaks at 24 h after irradiation, detected by the prematurely chromosome condensed (PCC) technique. Results: A linear-quadratic survival curve was observed in three cell lines, and HepG2 was the most sensitive to gamma-radiation. A dose-dependent linear increase was observed in radiation-induced non-rejoining G2-PCC breaks measured at 24 h after irradiation in all cell lines, and HepG2 was the most susceptible to induction of non-rejoining G2-PCC breaks. A close correlation was found between the clonogenic radiosensitivity and the radiation-induced non-rejoining G2-PCC breaks (r=0.923). Furthermore, survival-aberration correlations for two or more than two doses lever were also significant. Conclusion: The number of non-rejoining G2 PCC breaks holds considerable promise for predicting the radiosensitivity of normal and tumor cells when two or more than two doses lever is tested.
Resumo:
Background. The aim of this study is to assess an easy and quick method on simulating chromosome breaks in cells exposed to heavy charged particles. Methods. The theoretical value of chromosome break was calculated, and the validated comparison with the experimental value by using a premature chromosome condensation technique was done. Results. A good consistence was found to be appeared between the theoretical and experimental value. Conclusions. This suggested that a higher relative biological effectiveness of heavy ions was closely correlated with its physical characteristics and besides, a safe approach on predicting chromosome breaks in cells exposed to heavy ions at off-line environment come to be considered. Furthermore, three key factors influencing the theoretical simulation was investigated and discussed.
Resumo:
Three human malignancy cell lines were irradiated with Co-60 gamma-rays. Initial chromatid breaks were measured by using the chemically induced premature chromosome condensation technique. Survival curves of cells exposed to gamma rays was linear-quadratic while the efficiency of Calyculin A in inducing PCC of G(2) PCC was about five times more than G(1) PCC. A dose-dependent increase in radiation-induced chromatid/isochromatid breaks was observed in G(1) and G(2) phase PCC and a nearly positive linear correlation was found between cell survival and chromatin breaks. This study implies that low LET radiation-induced chromatid/isochromatid breaks can potentially be used to predict the radiosensitivity of tumor cells either in in vitro experimentation or in in vivo clinical radiotherapy.
Resumo:
Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with c-rays, 12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to c-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVlm 1 12C6+ ions, and 2.9 for both of the two cell lines of 512 keVlm 1 36Ar18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.
Resumo:
The purpose of this paper is to prepare for an easy and reliable biodosimeter protocol for radiation accidents involving high-linear energy transfer (LET) exposure. Human peripheral blood lymphocytes were irradiated using carbon ions (LET: 34.6 keV mu m(-1)), and the chromosome aberrations induced were analyzed using both a conventional colcemid block method and a calyculin A induced premature chromosome condensation (PCC) method. At a lower dose range (0-4 Gy), the measured dicentric (dics) and centric ring chromosomes (cRings) provided reasonable dose information. At higher doses (8 Gy), however, the frequency of dics and cRings was not suitable for dose estimation. Instead, we found that the number of Giemsa-stained drug-induced G2 prematurely condensed chromosomes (G2-PCC) can be used for dose estimation, since the total chromosome number (including fragments) was linearly correlated with radiation dose (r = 0.99). The ratio of the longest and the shortest chromosome length of the drug-induced G2-PCCs increased with radiation dose in a linear-quadratic manner (r = 0.96), which indicates that this ratio can also be used to estimate radiation doses. Obviously, it is easier to establish the dose response curve using the PCC technique than using the conventional metaphase chromosome method. It is assumed that combining the ratio of the longest and the shortest chromosome length with analysis of the total chromosome number might be a valuable tool for rapid and precise dose estimation for victims of radiation accidents.
Resumo:
The biophysical characteristics of heavy ions make them a rational source of radiation for use in radiotherapy of malignant tumours. Prior to radiotherapy treatment, a therapeutic regimen must be precisely defined, and during this stage information on individual patient radiosensitivity would be of very great medical value. There are various methods to predict radiosensitivity, but some shortfalls are difficult to avoid. The present study investigated the induction of chromatid breaks in five different cell lines, including one normal liver cell line (L02), exposed to carbon ions accelerated by the heavy ion research facility in Lanzhou (HIRFL), using chemically induced premature chromosome condensation (PCC). Previous studies have reported the number of chromatid breaks to be linearly related to the radiation dose, but the relationship between cell survival and chromatid breaks is not clear. The major result of the present study is that cellular radiosensitivity, as measured by D-0, is linearly correlated with the frequency of chromatid breaks per Gy in these five cell lines. We propose that PCC may be applied to predict radiosensitivity of tumour cells exposed to heavy ions.
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+) ion beams (linear energy transfer (LET) = 96 keV mu m(-1)) and gamma-rays at the Heavy Ion Research Facility in Lanzhou (HIRFL). The numbers and types of chromatid breaks were detected using the premature chromosome condensation technique. Irradiation with C-12(6+) ions produced a majority of isochromatid break types, while chromatid breaks were dominant for irradiation with gamma-rays. Experimental results showed that the initial level of chromatid breaks is clearly related to the absorbed dose from C-12(6+), ions and gamma-rays. The (12)C(6+)ions are relatively more effective at inducing initial chromatid breaks when compared with the gamma-rays. A relative biological effectiveness (RBE) of about 2.5 resulted for the induction of initial chromatid breaks by C-12(6+) ions relative to gamma-rays in both cell lines.
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.
Resumo:
恶性肿瘤(癌症)是危及人类生命健康最严重的疾病之一,放射治疗是一种较为有效的治疗手段。不同种类细胞对射线的敏感性有很大区别,即使同一细胞在不同的细胞周期时相、同一器官的不同部位其辐射敏感性也存在着明显的差异。为了认识人类不同种类月γ瘤细胞对γ射线的辐射敏感性的差异以及正常人细胞接受Y射线照射后染色体的损伤及修复,本研究以染色体断裂为预测指标,应用CalyculinA诱导的早熟染色体凝集技术对肝癌细胞系SMMC-7721、胃癌细胞系BGC-823、宫颈癌细胞系HeL。、黑色素瘤细胞系A375、肝细胞系L02等五种人类肿瘤细胞对Y射线的辐射敏感性及人类正常肝细胞染色体损伤的动态修复过程进行了研究。发现:1.Y射线照射后,肿瘤细胞染色体断裂与吸收剂量及染色体断裂和细胞存活率之间存在正相关关系,其中,在相同吸收剂量下染色单体断裂数目远较等点染色单体数目多;2.正常肝细胞在经过射线照射后染色体断裂数目也与吸收剂量和细胞存活率之间存在正相关关系,经过4昆小时的修复,染色单体断裂85%以上得到了有效修复,等点染色单体断裂修复率小于15%。结果提示:γ射线诱导产生的染色体断裂可以作为预测细胞辐射敏感性的可靠指标;辐射诱发正常细胞的癌变可能与等点染色单体的不能有效修复存在着密切的联系。这不仅对于具有个案针对性的临床放射治疗有着极为重要的指导意义,而且对于恶性肿瘤的发病机理也有重要意义。
Resumo:
A numerical 2D method for simulation of two-phase flows including phase change under microgravity conditions is presented in this paper, with a level set method being coupled with the moving mesh method in the double-staggered grid systems. When the grid lines bend very much in a curvilinear grid, great errors may be generated by using the collocated grid or the staggered grid. So the double-staggered grid was adopted in this paper. The level set method is used to track the liquid-vapor interface. The numerical analysis is fulfilled by solving the Navier-Stokes equations using the SIMPLER method, and the surface tension force is modeled by a continuum surface force approximation. A comparison of the numerical results obtained with different numerical strategies shows that the double-staggered grid moving-mesh method presented in this paper is more accurate than that used previously in the collocated grid system. Based on the method presented in this paper, the condensation of a single bubble in the cold water under different level of gravity is simulated. The results show that the condensation process under the normal gravity condition is different from the condensation process under microgravity conditions. The whole condensation time is much longer under the normal gravity than under the microgravity conditions.
Resumo:
We have observed strong scattering of a probe light by dilute Bose-Einstein condensate (BEC) Rb-87 gas in a tight magnetic trap. The scattering light forms fringes at the image plane. It is found that we can infer the real size of the condensation and the number of the atoms by modelling the imaging system. We present a quantitative calculation of light scattering by the condensed atoms. The calculation shows that the experimental results agree well with the prediction of the generalized diffraction theory, and thus we can directly observe the phase transition of BEC in a tight trap.
Resumo:
http://www.jstage.jst.go.jp/