17 resultados para china stock market
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
First, recent studies on the information preservation (IP) method, a particle approach for low-speed micro-scale gas flows, are reviewed. The IP method was validated for benchmark issues such as Couette, Poiseuille and Rayleigh flows, compared well with measured data for typical internal flows through micro-channels and external flows past micro flat plates, and combined with the Navier-Stokes equations to be a hybrid scheme for subsonic, rarefied gas flows. Second, the focus is moved to the microscopic characteristic of China stock market, particularly the price correlation between stock deals. A very interesting phenomenon was found that showed a reverse transition behaviour between two neighbouring price changes. This behaviour significantly differs from the transition rules for atomic and molecular energy levels, and it is very helpful to understand the essential difference between stock markets and nature.
Resumo:
Dew is an important water source for desert organisms in semiarid and arid regions. Both field and laboratory experiments were conducted to investigate the possible roles of dew in growth of biomass and photosynthetic activity within cyanobacterial crust. The cyanobacteria, Microcoleus vaginatus Gom. and Scytonema javanicum (Kutz.) Born et Flah., were begun with stock cultures and sequential mass cultivations, and then the field experiment was performed by inoculating the inocula onto shifting sand for forming cyanobacterial crust during late summer and autumn of 2007 in Hopq Desert, northwest China. Measurements of dew amount and Chlorophyll a content were carried out in order to evaluate the changes in crust biomass following dew. Also, we determined the activity of photosystem II(PSII) within the crust in the laboratory by simulating the desiccation/rehydration process due to dew. Results showed that the average daily dew amount as measured by the cloth-plate method (CPM) was 0.154 mm during fifty-three days and that the crust biomass fluctuated from initial inoculation of 4.3 mu g Chlorophyll a cm(-2) sand to 5.8-7.3 mu g Chlorophyll a cm(-2) crust when dew acted as the sole water source, and reached a peak value of approximately 8.2 mu g Chlorophyll a cm(-2) crust owing to rainfalls. It indicated that there was a highly significant correlation between dew amounts and crust moistures (r = 0.897 or r = 0.882, all P < 0.0001), but not a significant correlation between dew and the biomass (r = 0.246 or r = 0.257, all P > 0.05), and thus concluded that dew might only play a relatively limited role in regulating the crust biomass. Correspondingly, we found that rains significantly facilitated biomass increase of the cyanobacterial crust. Results from the simulative experiment upon rehydration showed that approximately 80% of PSII activity could be achieved within about 50 min after rehydration in the dark and at 5 degrees C, and only about 20% of the activity was light-temperature dependent. This might mean that dew was crucial for cyanobacterial crust to rapidly activate photosynthetic activity during desiccation and rehydration despite low temperatures and weak light before dawn. It also showed in this study that the cyanobacterial crusts could receive and retain more dew than sand, which depended on microclimatic characteristics and soil properties of the crusts. It may be necessary for us to fully understanding the influence of dew on regulating the growth and activity of cyanobacterial crust, and to soundly evaluate the crust's potential application in fighting desertification because of the available water due to dew. (C) 2009 Published by Elsevier Ltd.
Resumo:
Changes in the zooplankton community structure in relation to fishery practices in Lake Donghu, Wuhan, China were examined. The number of Protozoa species increased slightly, whereas the number of rotifers and crustaceans decreased from the 1960s to the 1990s. The total annual average densities of zooplankton increased 15-20 times in the 1990s compared with the 1960s. This increase was largely attributed to Protozoa, which contributed 93.4% by number of the total zooplankton density in 1991. Cladoceran densities decreased markedly from 1987. Changes in densities of rotifers and copepods were not evident. Trends in zooplankton biomass were similar to density. Large changes in zooplankton community structure coincided with markedly changes in concentration of chlorophyll a and transparency in Lake Donghu in 1987. The year 1987 seems to be the threshold year when the zooplankton community structure changed considerably. These changes were related to continuously increasing fish stock biomass in the lake. It was suggested that fish stocking and fish biomass should be a better managed for improvement of the quality of the lake's environment.
Resumo:
The authors reviewed the aquacultural history of Acipenseriformes in China, related the legal status and examined the current status of the cultured species or hybrids, origins of seedlings, quantities of production, geographic distribution in farming, and the sustainability for both restocking programmes and human consumption. The census shows that since 2000, the production of cultured sturgeons in China appears to have become the largest in the world. As of 2000, the rapid growth of sturgeon farming in China mainly for commercial purposes has shifted harvests in the Amur River from caviar production to the artificial culture of sturgeon seedlings. This dramatic development has also caused a series of extant and potential problems, including insufficient market availability and the impact of exotic sturgeons on indigenous sturgeon species. Annual preservation of sufficient higher-age sturgeons should be a national priority in order to establish a sustainable sturgeon-culture industry and to preserve a gene pool of critically endangered sturgeon species to prevent their extinction.
Resumo:
China has witnessed fast urban growth in the recent decade. This study analyzes spatio-temporal characteristics of urban expansion in China using satellite images and regionalization methods. Landsat TM images at three time periods, 1990/1991, 1995/1996, and 1999/2000, are interpreted to get 1:100000 vector land use datasets. The study calculates the urban land percentage and urban land expansion index of every 1 km(2) cell throughout China. The study divides China into 27 urban regions to conceive dynamic patterns of urban land changes. Urban development was achieving momentum in the western region, expanding more noticeably than in the previous five years, and seeing an increased growth percentage. Land use dynamic changes reflect the strong impacts of economic growth environments and macro-urban development policies. The paper helps to distinguish the influences of newly market-oriented forces from traditional administrative controls on China's urban expansion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.
Resumo:
The thermophily, fishing season and central fishing ground of Japanese pilchard (Sardinops melanosticta) were studied by using satellite remote sensing (SRS) and other methods in Haizhou Bay and Tsushima waters during 1986-1990. A rapid prediction method of fishing ground is presented. Moreover, the results indicated that the thermophilic values of the fish stock are 11-20 degrees C and both fishing grounds are in increasing temperature process from the beginning to the end of the fishing period. The Japanese pilchards gather vigorously at the sea surface temperature of 15-17 degrees C. The water temperature is a key factor affecting the fishing season and the catch of the fishing ground. The increasing temperature process restricts the fishing season development and central fishing ground formation. The accuracy of 15 predictions made in the Haizhou Bay fishing ground is up to 91.3%, and 37 predictions made in the Tsushima, fishing ground shorten the fish detection time by 13.4% - 22% on the average.
Resumo:
Shipboard incubations were conducted in spring (April) and autumn (October/November) 2006 to measure the feeding and egg production rates (EPR) of Calanus sinicus in the Yellow Sea, China. The ingestion rate (2.08-11.46 and 0.26-3.70 mu g C female(-1) day(-1) in spring and autumn, respectively) was positively correlated with microplankton carbon concentrations. In the northern part of the Yellow Sea, feeding on microplankton easily covers the respiratory and production requirements, whereas in the southern part in spring and in the frontal zone in autumn, C. sinicus must ingest alternative food sources. Low ingestion rates, no egg production and the dominance of the fifth copepodite (CV) stage indicated that C. sinicus was in quiescence inside the Yellow Sea Cold Bottom Water (YSCBW) area in autumn. Calanus sinicus ingested ciliates preferentially over other components of the microplankton. The EPR (0.16-12.6 eggs female(-1) day(-1) in spring and 11.4 eggs female(-1) day(-1) at only one station in autumn) increased with ciliate standing stock. Gross growth efficiency (GGE) was 13.4% (3-39%) in spring, which was correlated with the proportion of ciliates in the diet. These results indicate that ciliates have higher nutrient quality than other food items, but the low GGE indicates that the diet of C. sinicus is nutritionally incomplete.
Resumo:
We conducted 28 dilution experiments during August-September 2007 to investigate the coupling of growth and microzooplankton grazing rates among ultraphytoplankton populations and the phytoplankton community and their responses to habitat variability (open-ocean oligotrophy, eddy-induced upwelling, and the Mekong River plume) in the western South China Sea. At the community level, standing stocks, growth, and grazing rates were strongly and positively correlated, and were related to the higher abundance of larger phytoplankton cells (diatoms) at stations with elevated chlorophyll concentration. Phytoplankton growth rates were highest (> 2 d(-1)) within an eastward offshore jet at 13 degrees N and at a station influenced by the river plume. Among ultraphytoplankton populations, Prochlorococcus dominated the more oceanic and oligotrophic stations characterized by generally lower biomass and phytoplankton community growth, whereas Synechococcus became more important in mesotrophic areas (eddies, offshore jet, and river plume). The shift to Synechococcus dominance reflected, in part, its higher growth rates (0.87 +/- 0.45 d(-1)) compared to Prochlorococcus (0.65 +/- 0.29 d(-1)) or picophytoeukaryotes (0.54 +/- 0.50 d(-1)). However, close coupling of microbial mortality rates via common predators is seen to play a major role in driving the dominance transition as a replacement of Prochlorococcus, rather than an overprinting of its steady-state standing stock.
Resumo:
Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43 +/- 2.64 (Mean +/- SD) mg m(-3) in April (range, 0.35 to 17.02 mg m(-3)) and 1.75 +/- 3.10 mg m(-3) in September (from 0.07 to 36.54 mg m(-3)) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0-10 m) for onshore stations and the thermocline layer (10-30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0-10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.
Resumo:
Copepod communities in onshore and offshore waters show a gradient from primarily near shore to primarily oceanic species. Understanding the transition between these communities is fundamental to determining the range of coastal influence. Copepod communities in the northern South China Sea (nSCS) were studied based on samples collected by vertically towing a net in 10 February-6 March (winter) and 26 August-6 September (summer) of 2004. Calanoida species richness, total copepod abundance, Shannon-Weaver diversity index, and onshore-offshore occurrence of dominant species showed obvious change from onshore to offshore waters. Although the offshore stations had lower abundance than the shelf stations, they had more species and larger diversity index. Abundance of some species (groups) with dominance index > 5% (Calanus sinicus, Euchaeta spp., Temora spp., Paracalanus parvus, and Subeucalanus subtenuis) declined from onshore to offshore waters. Warm water species (Pleuromamma abdominalis, P. gracilis, and P. robusta) occurred in offshore waters in both cruises. Station (q-type) cluster analysis in winter and summer separated copepod community into onshore and offshore communities at similar to 40% level of similarity. The two communities were divided at the position of similar to 100-m isobath. In summer, C. sinicus occurred in the upwelling area east of Hainan Island, indicating the presence of an oversummering stock of this species.
Resumo:
The abundance of anchovy Engraulis japonicus larvae, >20 mum ciliates, copepod eggs and nauplii, and microzooplankton herbivorous activity were studied in the Yellow Sea in June 2000. Anchovy juveniles and larvae were found in only 6 of the 19 stations sampled. The ciliate communities were dominated by 2 species: Laboea strobila and Strombidium compressum. In the surface waters, the abundance of L. strobila ranged between 0 and 560 ind. l(-1). S. compressum only appeared at Stns 15 to 18 (20 to 3300 ind. l(-1)). L. strobila was found mainly in the top 20 m. The abundance of L. strobila was less than 50 ind, l(-1) in waters deeper than 25 m. S, compressum showed subsurface abundance peaks at the salinity abnormality. Tintinnids occurred occasionally with abundance lower than 100 ind. l(-1), The total ciliate abundance fell in the range of 40 to 3420 ind. l(-1). The ciliate biomass in the surface water and the water column ranged between 0,15 and 6.76 mug C l(-1) and 0.4 and 134.4 mg C m(-2), respectively, In the surface waters, the abundance of copepod eggs and nauplii ranged from 0,3 to 3.1 and 1,1 to 15.6 ind, l(-1), respectively. The average abundance of copepod eggs and nauplii in 4 depth (0, 5, 10 and 20 m) fell in the range of 0.2 to 2.8 and 1.0 to 29.4 ind. l(-1), respectively. As a food item of the E. japonicus post-larvae, the abundance of copepod nauplii and eggs appeared to be low. The abundance peaks of ciliate and E, japonicus post-larvae coincided. Although not found in the gut of E, japonicus post-larvae, aloricate ciliates might be ingested by first-feeding anchovy larvae, preventing initial starvation and prolonging the time to irreversible starvation. On the basis of dilution experiments with positive microzooplankton grazing rates, microzooplankton grazed at rates of 0 to 0.61 d(-1). Grazing pressure of microzooplankton on chlorophyll a standing stock (P-i) and potential chlorophyll a primary production (P-p) were 17 to 46% and 35 to 109% d(-1), respectively.
Resumo:
The abundance and biomass of ciliated protozoa and copepod nauplii were investigated at 21 grid stations and two anchored stations in the Laizhou Bay, Bohai Sea, China in June 1998. Dilution incubations were carried out to investigate micro-zooplankton grazing pressure at the anchored stations during spring tide and neap tide. The dominant species were Tintinnopsis amoyensis, T. chinglanensis, T. pallida and aloricate ciliates. A total of 13 species of tintinnids were found. The total abundance of ciliates and nauplii ranged from 30 to 2390 ind l(-1) at grid stations. Tintinnopsis amoyensis was the only ciliate found at the anchored stations and in concentrations which varied from 0 to 6700 ind l(-1). The spatial distribution of ciliates was patchy. Tintinnopsis amoyensis and T. pallida were distributed in the Weihe River mouth and Xiaoqinghe River mouth respectively. The aloricate ciliates, T. chinglanensis and Codonellopsis ostenfeldi dominated offshore in sequence. The water mixing process may affect the spatial pattern of the dominant ciliate species. The abundance and biomass of copepod nauplii were in the range of 0-140 ind l(-1) and 0-7 mu g C l(-1) respectively, with the peak appearing at grid station 15. The total biomass of ciliates and copepod nauplii was in the range of 1(.)5-25 mu g C l(-1). Water column biomass of ciliates and nauplii varied from 2(.)37 to 52(.)3 mg C m(-2). At the anchored stations, the phytoplankton growth rates ranged from undetectable to 0 21 d(-1) and micro-zooplankton grazing rates from 0 13 to 0(.)57 d(-1). The grazing pressure of micro-zooplankton were 12 to 43% of the chlorophyll standing stock and 84 to 267% of the chlorophyll (C) 2000 Academic Press.