244 resultados para carbon supported PtSn catalysts
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.
Resumo:
PdSn/C catalysts with different atomic ratios of Pd to Sn were synthesised by a NaBH4 reduction method. Electrochemical tests show that the alloy catalysts exhibit significantly higher catalytic activity and stability for formic acid electrooxidation (FAEO) than the Pd/C catalyst prepared with the same method. XRD and TEM indicate that a particle-size effect is not the main cause for the high performance. XPS confirms that Pd is modified by Sn through an electronic effect which can decrease the adsorption strength of poisonous intermediates on Pd and thus promote the FAEO greatly.
Resumo:
In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.
Resumo:
A carbon supported Pt-Ru (Pt-Ru/C-T) catalyst can be prepared by a chemical reduction method in an aqueous solution with tetrahydrofuran (THF) at room temperature. The Pt-Ru particles possess high alloying, small average size and a low relative crystallinity. The electrocatalytic activity of the prepared Pt-Ru/C catalyst for methanol oxidation is much higher than that of commercial Pt-Ru/C (Pt-Ru/C-E) catalysts which have a similar average size and relative crystallinity, but the alloying extent is much lower than that in our Pt-Ru/C-T catalyst. The results illustrate that the alloying extent of Pt and Ru in the Pt-Ru/C catalyst plays an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for methanol oxidation.
Resumo:
A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer-Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.
Resumo:
In this paper, it is reported for the first time that a carbon-supported Pd-P (Pd-P/C) catalyst for the anodic catalyst in the direct formic acid fuel cell (DFAFC) can be prepared. The Pd-P/C catalyst shows that its electrocatalytic activity and especially its stability for the oxidation of formic acid are much higher than that of a Pd/C catalyst. Therefore, the Pd-P/C catalyst may have practical applications in DFAFCs.
Resumo:
Heteropolyacids (HPAs) possess both acidic and redox catalytic properties and held extensive promise of practical application. These type of compound display a great potential of specific synthesis reactions for replacing sulfuric acid to satisfy the requirements of environmental protection. Heterogenizing HPAs would not only make them more useful in liquid phase oxidation with oxygen and in acid-catalyzed reaction, as the catalyst is often difficult to separate from the reaction products, but also create favorable factors for realizing heterogenization of homogeneous reaction and even utilizing new technology of catalytic distillation. In this paper, different kinds of porous materials which are well characterized, including oxides such as Al2O3, SiO2, TiO2, diatomite, bentonite, and active carbon of different sources, were used as support for heterogenizing HPAs (in different media), and the obtained results, the intrinsic characters of supports which may influence both the nature of the interaction between HPAs and supports in the heterogenization and the activity in the catalytic reaction, are explored. It is expected that these can provide a referential model for preparing supported acid catalyst used in liquid phase.