30 resultados para carbon steel

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

在四辊冷轧试验机和Gleeble-1500试验机上进行了热轧微碳钢板的冷轧和退火试验。用D/max-RC衍射仪测量了试样的,/”层织构,并用Roe软件进行了ODF分析。研究表明,所研究的热轧微碳深冲板压下率约为75%,退火升温速度为20-40℃/h时,试样为{111}织构特征;压下率较大(80%)时,退火织构为较弱的{111}组分。无论{111}织构还是非{111}织构都是在形核阶段开始形成,在晶粒长大优先长大,受到定向形核和选择生长双重机制的作用。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l(-1)) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l(-1) BTA and 2 g l(-1) SP showed optimum enhanced inhibition compared with their individual effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) monolayers of hexadecyl trimethyl ammonium bromide (HTAB) were deposited onto a carbon steel surface to investigate the inhibition of corrosion by measurement of the polarization resistance and cyclic voltammetry. The corrosion proc

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in-situ study of steel corrosion in sea bottom sediment (SBS) was carried out by Transplanting Burying Plate method (TBP method). It was found that the corrosion rate of steel in the sea bottom sediment with sulfate reducing bacteria (SRB) could be as high as ten times of that in sea bottom sediment without SRB. The experiments in simulated sea bottom sediments with different SRB contents by artificial culturing showed that the electrochemical behavior of steel in the sea bottom sediment with SRB was different from that without SRB. SRB altered the polarization behavior of steel significantly. The environment was acidified due to the activity of SRB and the corrosion of steel was accelerated. The corrosion of carbon steel in sea bottom sediment is anaerobic corrosion, and the main factor is anaerobe. There are SRB commonly in SBS, and the amount of SRB decreases along with the depth of sediment. Because of the asymmetry and variation of sea bottom sediment, the most dangerous corrosion breakage of steel in SBS is local corrosion caused by SRB. So the main countermeasure of corrosion protection of sea bottom steel facilities should be controlling of the corrosion caused by anaerobe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacteria in the anaerobic biofilm on rusted carbon steel immersed in natural seawater were characterized by culturing and molecular biology techniques. Two types of anaerobic bacterium, sulfate-reducing bacteria (SRB) Desulfovibrio caledoniensis and iron-reducing bacteria Clostridium sp. uncultured were found. The compositions of the rust layer were also analyzed and we found that iron oxide and sulfate green rust were the major components. To investigate the corrosion mechanisms, electrochemical impedance spectra was obtained based on the isolated sulfate-reducing bacteria and mixed bacteria cultured from rust layer in laboratory culture conditions. We found that single species produced iron sulfide and accelerated corrosion, but mixed species produced sulfate green rust and inhibited corrosion. The anaerobic corrosion mechanism of steel was proposed and its environmental significance was discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of the growing process of sulfate-reducing bacteria (SRB) in seawater system on the medium state and corrosion behavior of carbon steel were studied by detecting solution state parameters and using corrosion electrochemical methods. The growing process of SRB in the seawater shows the three stages of growing, death and residual phases. The solution state parameters of the concentration of sulfide, the pH value and the redox potential changed during the three stages of the SRB growing process. And the corrosion rate of D36 carbon steel was accelerated during the growing phase and stable during the death and residual phases. The results indicate that the medium state and the corrosion rate of the steel do not depend on the number of active SRB, but depend on the accumulation of the metabolism products of SRB. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)(2)) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)(2) with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e(-) and 4e(-) reactions, occurring simultaneously, to quietly 4e(-) reaction with the increasing chloride ion concentration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A newly synthesized benzoic-triazole derivative 3,5-dimethylbenzoic acid [1,2,4]triazol-l-ylmethyl ester (DBT) was investigated as a corrosion inhibitor of mild steel in 1 M HCl solution using weight loss measurements, potentiodynamic polarization, SEM, and EIS methods. The results revealed that DBT was an excellent inhibitor, and the inhibition efficiencies obtained from weight loss and electrochemical experiments were in good agreement. Using the potentiodynamic polarization technique, the inhibitor was proved to have a mixed-type character for mild steel by suppressing both anodic and cathodic reactions on the metal surface. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the Flory-Huggins, Dhar-Flory-Huggins, and Bockris-Swinkels substitutional adsorption isotherms applied to the data obtained from the gravimetric experiments performed on a mild steel specimen in 1 M HCl solution at 298 K.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research on corrosion of steel structures in various marine environments is essential to assure the safety of structures and can effectively prolong their service life. In order to provide data for anticorrosion design of oil exploitation structures in the Bohai Bay, the corrosion behaviour and properties of steel in beach soil, using typical steel samples (Q235A carbon steel and API 5Lx52 pipeline steel) buried 0.5, 1.0 and 1.5 m deep under typical beach soils in Tanggu, Yangjiaogou, Xingcheng, Yingkou and Chengdao for 1-2 years were studied. The carbon steel and pipeline steel were both corroded severely in the beach soil, with the form of corrosion being mainly uniform with some localised attack (pitting corrosion). The corrosion rate of the carbon steel was up to 0.16 mm/year with a maximum penetration depth of 0.76 mm and that of the pipeline steel was up to 0.14 mm/year, with a maximum penetration depth of 0.53 mm. Compared with carbon steel, the pipeline steel generally had better corrosion resistance in most test beach soils. The corrosion rates and the maximum corrosion depths of carbon steel and pipeline steel were in the order: Tanggu>Xingcheng>Chengdao>Yingkou>Yangjiaogou with corrosion altering with depth of burial. The corrosion of steel in the beach soil involves a mixed mechanism with different degrees of soil aeration and microbial activity present. It is concluded that long term in situ plate laying experiments must be carried out to obtain data on steel corrosion in this beach soil environment so that the effective protection measures can be implemented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The inhibitory effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine (TPT) molecules on the corrosion of mild steel in 1 mol/L HCl and microcosmic inhibitory mechanism were investigated by X-ray photoelectron spectroscopy and ellipsometry. XPS results showed that C Is and N Is peaks of TTC, C Is and N Is peaks of TPT and their integral areas were obtained, which suggested the layer of the inhibitors (TTC or TPT) should have effectively protected the mild steel surface from the corrosion; and the depression from the inhibitors for the corrosion of mild steel surface was studied using ellipsometry combined with potentiodynamic polarization and the phasic difference was gained, which displayed the inhibitory coverage of the inhibitors formed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of simulation experiments on carbon steel (A(3) steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0.12 mm/a, approximately equal to that of steel plates in marine atmosphere. The test results showed that the corrosion rates of A(3) and 16 Mn steel in marine environment were in the order: MA > SW > SBS by the IHP method; and MA > SBS > SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.