6 resultados para calculation models
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
So far, various calculation models for the vertical distribution of suspended sediment concentration have been produced by several investigators from different theories. The limitations of all these models imply that it is possible to find a more reasonable model, for which each previous model can be included as special case. The formulation of a reasonable general model is the purpose of this paper.
Resumo:
介电泳方法被广泛地应用于微纳颗粒的分离和操纵中,实现介电泳操作的关键是设计满足所需电场分布的电极阵列。针对目前在微电极阵列设计中尚缺乏简单有效的电场解析方法的现状,提出一种基于格林公式的电极阵列电场的解析方法。首先介绍了传统介电泳和行波介电泳的概念和计算模型,分析了介电泳过程与电极上所施加的交变电压的频率和幅度的关系,然后在确立电极电势的边界条件的基础上,采用基于格林公式的电场解析方法,建立了非均匀电场的解析模型,得出不同条件下的电极阵列电场分布的仿真结果,最后利用FEMLAB有限元仿真软件对解析模型进行了对比仿真,验证了该解析模型的可行性。基于格林公式的电场解析求解方法能够有效地提高电极阵列设计中的针对性以及缩短电极设计的时间。
Resumo:
In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in ( synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural frequency. A theoretical minimum value of the added mass coefficient for a circular cylinder at lock-in is given. Developed are semi-empirical formulas for the added mass of a circular cylinder at lock-in as a function of flow speed and mass ratio. A comparison between experiments and numerical simulations shows that the semi-empirical formulas describing the variation of the added mass for a circular cylinder at lock-in are better than the ideal added mass. In addition, computation models such as the wake oscillator model using the present formulas can predict the amplitude response of a circular cylinder at lock-in more accurately than those using the ideal added mass.
Resumo:
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
Resumo:
Mathematical formulas for estimating the hourly and daily radiation incident on planes of azimuth three step tracking and hour angle three step tracking have been derived in this paper. Based on the hourly solar radiation data of an average day in each month at Er-Lian-Hao-Te city, the hourly and monthly radiation received by planes of these two kinds of tracking have been calculated. The results show that in this district, one axis azimuth three step tracking and hour angle three step tracking could, respectively, obtain 66.5% and 63.3% higher radiation than that on the horizontal surface all year. Moreover, a two axis azimuth three step tracking plane could receive 72% more radiation than the horizontal surface. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
By using three analytical phonon models in quantum wells-the slab model, the guided-mode model, and the improved version of the Huang-Zhu model [Phys. Rev. B 38, 13 377 (1998)], -and the phonon modes in bulk, the energy-loss rates of hot carriers due to the Frohlich potential scattering in GaAs/AlAs multiple quantum wells (MQW's) are calculated and compared to those obtained based on a microscopic dipole superlattice model. In the study, a special emphasis is put on the effects of the phonon models on the hot-carrier relaxation process when taking the hot-phonon effect into account. Our numerical results show that, the calculated energy-loss rates based on the slab model and on the improved Huang-Zhu model are almost the same when ignoring the hot-phonon effect; however, with the hot phonon effect considered, the calculated cooling rate as well as the hot phonon occupation number do depend upon the phonon models to be adopted. Out of the four analytical phonon models investigated, the improved Huang-Zhu model gives the results most close to the microscopic calculation, while the guided-mode model presents the poorest results. For hot electrons with a sheet density around 10(12)/cm(2), the slab model has been found to overestimate the hot-phonon effect by more than 40% compared to the Huang-Zhu model, and about 75% compared to the microscopic calculation in which the phonon dispersion is fully included. Our calculation also indicates that Nash's improved version [J. Lumin. 44, 315 (1989)] is necessary for evaluating the energy-loss rates in quantum wells of wider well width, because Huang-Zhu's original analytical formulas an only approximately orthogonal for optical phonons associated with small in-plane wave numbers. [S0163-1829(99)08919-5].