16 resultados para buckling
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Many structural bifurcation buckling problems exhibit a scaling or power law property. Dimensional analysis is used to analyze the general scaling property. The concept of a new dimensionless number, the response number-Rn, suggested by the present author for the dynamic plastic response and failure of beams, plates and so on, subjected to large dynamic loading, is generalized in this paper to study the elastic, plastic, dynamic elastic as well as dynamic plastic buckling problems of columns, plates as well as shells. Structural bifurcation buckling can be considered when Rn(n) reaches a critical value.
Resumo:
Post-microbuckling is a fundamental feature of compressive failure process for the unidirectional-fiber-reinforced composites and laminated composites. The post-microbuckling behavior of composites under compression in the light of the Kevlar49-reinforced 648/BF3.400 (brittle epoxy) and EP (flexible epoxy) is studied, theoretically and experimentally. Analytical results of compressive strength are in good agreement with experimental results, qualitatively and quantitatively. By the experimental research, the post-microbuckling feature of the advancing kink band model is clearly displayed.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
A dimensionless number, termed as response number in Zhao [Archive of Applied Mechanics 68 (1998) 524], has been suggested for the dynamic plastic response of beams and plates made up of rigidly perfect plastic materials subjected to dynamic loading. Many theoretical and experimental results can be reformulated into new concise forms with the response number. The concept of a new dimensionless number, response number, termed as Rn(n), is generalized in Zhao [Forschung im Ingenieurwesen 65 (1999) 107] to study the elastic, plastic, dynamic elastic as well as dynamic plastic buckling problems of columns, plates as well as shells. The response number Rn(n) is generalized to the dynamic behaviour of shells of various shapes in the present paper.
Resumo:
The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.
Resumo:
考虑海床刚度,研究了埋设悬跨海底管道在热膨胀引起的轴向压力下的屈曲问题。传统方法是将悬跨管道简化为两端简支或者两端固支梁来处理。基于欧拉.伯努利梁理论,考虑线弹性海床刚度和轴向压力,建立并求解了埋设段管道和悬跨段管道在自重作用下的四阶常微分方程,获得了两段管道的静挠度和内力的解析公式。通过对静挠度的特性分析,给出了埋设管道段和悬跨管道段的稳定性判断准则。
Resumo:
The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.
Resumo:
为了测量强界面电镀铬层的界面韧性,利用连续CO_2激光器对钢基体上的电镀铬层表面进行循环扫描实验。结果表明:该种加热方式能够诱发铬层沿激光扫描方向呈周期性分布的屈曲变形。在此基础上,结合涂层屈曲变形理论,提出测量镀铬层界面韧性的激光屈曲法。该方法只需对一个屈曲单元的最大屈曲高度和屈曲半长进行测量,就可给出界面韧性。作为应用举例,利用该方法对上述镀铬层/钢基体结构界面韧性进行了测量。
Resumo:
建立了两端埋设在线弹性土壤中的悬跨管道的屈曲方程。利用细长梁小挠度理论,建立了含有轴向压力的悬跨段和埋设段管道的弯曲控制方程。基于埋设段管道的刚度和变形特性,建立了符合悬跨段管道实际情况的边界条件。导出了悬跨段管道对称屈曲和反对称屈曲的屈曲载荷方程,通过数值求解给出了不同土壤刚度系数条件下悬跨段管道屈曲载荷。研究表明:悬跨段管道的届曲载荷系数依赖于土壤刚度系数,简支梁模型只在特定的土壤刚度系数下适用于悬跨管道;在土壤刚度系数很大时,两端固支梁模型才能反映悬跨管道的屈曲特性。建议采用该方法进行埋设悬跨管道的屈曲分析。
Resumo:
对强激光辐照下薄板(铜片)的动态热失稳过程进行了分析,得出了简支圆薄板在热冲击下发生的屈曲及后屈曲过程,并给出了临界激光功率密度与薄板厚径比的关系曲线,方法计入了温度分布、惯性项和缺陷大小对于失稳过程的影响。这一工作有利于人们对强激光引起的硬目标破坏机理的认识。
Resumo:
本书为祝贺郑哲敏先生八十华诞的学术报告会的文集,其中收录邀请报告12篇,定向征文58篇。这些论文涉及爆炸力学、岩土力学、冲击力学、材料力学性能、生物力学、物理力学、海洋工程力学、环境流体力学等几大方面,绝大多数为论文作者科研项目的最新成果。
会议论文 |
序 | 洪友士; | ||||||
内禀Deborah数在破坏现象中的意义 | 白以龙;汪海英; | ||||||
爆炸波在混凝土夹层结构中传播特性分析 | 段祝平; | ||||||
海洋内波与海洋工程 | 李家春;程友良;范平; | ||||||
郑哲敏先生为推动我国力学和技术科学发展所作的贡献 | 谈庆明; | ||||||
开发深海资源的海底空间站技术 | 曾恒一; | ||||||
微系统动力学研究的一些新进展 | 赵亚溥; | ||||||
爆炸近区空气冲击波规则反射和非规则反射 | 周丰峻;陈叶青;任辉启; | ||||||
椭圆函数的精细积分算法 | 钟万勰;姚征; | ||||||
量子蒙特卡罗法的研究 | 孙祉伟; | ||||||
拟Hamilton系统随机平均法在活性布朗粒子动力学研究中的应用 | 朱位秋;邓茂林; | ||||||
二个二阶张量的各向同性标量函数的广义坐标 | 王文标;段祝平; | ||||||
弹性杆轴向碰撞波动问题理论分析 | 马炜;刘才山;黄琳; | ||||||
两个可变形结构的相互碰撞——模型与验证 | 余同希;阮海辉; | ||||||
结构动力计算中自由度减缩方法概述 | 刘彬;丁桦;梁乃刚; | ||||||
弹塑性系统动力行为探讨 | 杨桂通; | ||||||
SINGULARITY THEORY ON BUCKLING OF COMPRESSIBLE ELASTIC SLENDER RODS | 张义同;谢宇新; | ||||||
GCr15钢超高周疲劳断口观察与裂纹起源分析 | 周承恩;洪友士; | ||||||
纳米尺度毛细作用学——纳米物理力学的新领域 | 朱如曾; | ||||||
METALLIC CELLULAR SOLIDS UNDER IMPACT LOADING | H.Zhao;S.Abdennadher;I.Elnasri; |
Resumo:
This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke’s law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.
Resumo:
Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.
Resumo:
Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.
Resumo:
The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 S to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda similar to (h(PS)h(PVP))(1/2).