33 resultados para breeding population
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is currently limited to the middle and lower reaches of the Yangtze River from Yichang to Shanghai, China, and the adjoining Poyang and Dongting Lakes. Its population size has decreased remarkably during the last several decades due to the heavy impact of human activities, including overfishing of prey species, water development projects that cause attendant habitat loss and degradation, water pollution, and accidental deaths caused by harmful fishing gear and collisions with motorized vessels. It was estimated that the number of remaining individuals was down to approximately 1800 in 2006, a number that is decreasing at a rate as high as 5% per year. Three conservation measures - in situ and ex situ conservation and captive breeding have been applied to the protection of this unique porpoise since the early 1990s. Seven natural and two "semi-natural" reserves have so far been established. Since 1996, a small group of finless porpoises has been successfully reared in a facility at the Institute of Hydrobiology of the Chinese Academy of Sciences; three babies were born in captivity on July 5, 2005, June 2, 2007 and July 5, 2008. These are the first freshwater cetaceans ever born in captivity in the world. Several groups of these porpoises caught in the main stream of the Yangtze River, or rescued, have been introduced into the Tian'e-Zhou Semi-natural Reserve since 1990. These efforts have proven that, not only can these animals survive in the area, they are also to reproduce naturally and successfully. More than 30 calves had been born in the reserve since then, with one to three born each year. Taking deaths and transfers into account, there were approximately 30 individuals living in the reserve as of the end of 2007. Among eight mature females captured in April 2008, five were confirmed pregnant. This effort represents the first successful attempt at off-site protection of a cetacean species in the world, and establishes a solid base for conservation of the Yangtze finless porpoise. A lesson must be drawn from the tragedy of Chinese River Dolphin (Lipotes vexillifer), which has already been declared likely extinct. Strong, effective and appropriate protective measures must be carried out quickly to prevent the Yangtze finless porpoise from becoming a second Chinese River Dolphin, and save the biodiversity of the Yangtze River as a whole.
Resumo:
The Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis, is all endangered small cetacean that occurs only in the middle and lower reaches of the Yangtze River of China. The establishment of a breeding population of the porpoise in Tian-e-Zhou Baiji National Natural Reserve represents the first attempt at ex situ conservation efforts for a cetacean species. With the goal of effective protection, management, and monitoring of this preserved population, we examined its genetic diversity using 930 bp of mtDNA control region sequences and 13 polymorphic microsatellite loci. A very low level of genetic variation (h = 0.6010 +/- 0.0029 s.d.; pi = 0.0007 +/- 0.0000002 s.d.) in the mtDNA control region sequences and a moderate genetic diversity (Ho = 0.5740 +/- 0.2575 s.d.) in the microsatellites were detected in the population. It is necessary to introduce more individuals with representative genetic variations into the reserve ill order to foml a larger and healthier group structure for long-term survival of the population. Successful establishment of the Yangtze finless porpoise population in the Reserve also provides a useful model for an ex situ conservation programme for other rare and endangered species. (c) 2005 International Council for the Exploration ofthe Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background, Aim and Scope. There are two species of fresh water cetaceans surviving in the Yangtze River system in China: Baiji (Lipotes vexillifer) and Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis). As a result of the expansion of human activities on the river, their distribution ranges appear to be decreasing and in the case of the Baiji, are even being restricted to several sections. The Baiji is the world's most critically endangered cetacean species with a population estimated at only a few tens of individuals. The Yangtze finless porpoise is the world's only freshwater-adapted population of the species, and it has been estimated that only around 1,000 individuals remain in the river system. In order to prevent the extinction of Baiji and a sharp decline in the abundance of the porpoise, in situ conservation (i.e. in the river) and two ex situ conservation (i.e. in semi-natural reserves and in captivity) strategies were proposed and have been implemented since the early 1990s. In view of both the severely endangered status of the animals and the severely degraded conditions of their habitats, the feasibility and actual status of these two strategies are raised for discussion. Main Features. The threats faced by the cetaceans are mainly from the unfettered exploitation of the river's resources. In the past 20 years, five nature reserves have been established along the river. Imposing maximum prohibition of harmful and illegal fishing methods in the reserves might prolong the process of extinction of these cetaceans in the wild, but so far, the administrative measures taken in the reserves have not yet kept the abundance from sharply declining. As human use of the river and its resources is expected to intensify for many decades into the future, the ability of the river to continue to support these species is certainly undecided. Therefore, rescuing animals from the river and establishing viable breeding populations in semi-natural reserves, in which the environment is similar to the main stream of the river, and in captivity, has to be considered urgently as the short-term goal of ex situ strategies. Since the abundance of porpoises is higher than that of the Baiji, we have first established breeding populations of them in the semi-natural reserves and in captivity. But, considering the extremely low density of Baiji in the river, an immediate range-wide Yangtze Baiji survey is an urgent need for locating and capturing sufficient Baiji for successfully establishing a breeding population of them in semi-natural reserves. Results. Two semi-natural reserves (in Shishou, Hubei Province, and Tongling, Anhui Province) have been set up along the river in order to establish breeding populations of the Baiji and the porpoises. So far, several small groups of porpoises that were caught in the main stream of the river have successively been introduced into the semi-natural reserves. Under careful management, these animals in both of the semi-natural reserves not only survive, but can also reproduce naturally and successfully. At least one or three calves were born in each reserve each year. Additionally, a breeding group of porpoises is being established at the Baiji Dolphinarium at the Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. There are presently four adults and one calf living in the Dolphinarium. The calf, born in July, 2005, is the first captive bred Yangtze Finless Porpoise in the world. In preparation for the range-wide Yangtze cetacean survey, a 9-day pilot expedition on the river near Wuhan was conducted in March, 2006, in order to develop methods for locating the Baiji. No Baiji were expected to be seen in such a short period but about 40 porpoise sightings were observed. Results of the pilot survey indicated that traditional visual and acoustical survey methods for cetaceans should be adapted to find the elusive Baiji in the river. Currently, the range-wide Yangtze cetacean survey is in preparation. The survey will cover over 1,700 km of the Yangtze River from Yichang to Shanghai, and is expected to provide detailed information on Baiji and porpoise numbers and distribution patterns in the river. Discussion. Although the short-term goal of ex situ conservation is to rescue cetaceans from the river and to establish viable breeding populations in semi-natural reserves and in captivity, the long-term goal of releasing the animals back into the river when the threats have decreased and the natural environment has been improved, should not be neglected. Moreover, the in situ conservation efforts in the natural reserves, and even in the entire Yangtze River system, including the lakes, should not be ignored or abandoned at any time. The activities contributing to the conservation of the Baiji and the porpoise in the wild have the incidental effect of benefiting the entire Yangtze ecosystem and other rare threatened species. The dynamics of the groups of porpoises in semi-natural reserves should be monitored continually, in order to guide the establishment of breeding groups of Baiji in these semi-natural reserves in the near future. Conclusions. Under the existing severely degraded conditions of the Yangtze system, the sharply fall populations of Baiji and porpoises will not be suspended in the foreseeable future. Therefore, ex situ conservation should be emphasized, and the severely threatened Baiji in the river should be removed and translocated to semi-natural reserves for establishing viable breeding populations. The successful program of capturing, translocating and maintaining finless porpoises in the Shishou semi-natural reserve has demonstrated its adequacy as an ex situ environment for cetaceans. Following the successful pilot survey in the river, the immediate range-wide Yangtze cetacean survey is proposed and is in preparation. The range-wide survey is expected to ensure that any remaining Baiji can be found reliably and captured successfully after the survey. Recommendations and Perspectives. During the range-wide survey, not only the Baiji but also the porpoise as well as their habitats should be investigated based on visual and acoustical methods that adapted to the river and the animals. Meanwhile, the current risk levels to the Baiji and porpoises should be evaluated at each area where Baiji or porpoises can be reliably sighted. Any capture efforts should be targeted on the most threatened areas, or where there is maximum risk of injury or death. The immediate track of the Baiji should be carried out once a Baiji is sighted during the range-wide survey in order to obtain the movement route of the animals, which is crucial information for the successful capture operation. Additionally, the need to establish new semi-natural reserves for the porpoises should be placed on the agenda of local and central governments in the near future.
Resumo:
The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the similar to 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428 bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst = 0.70, P < 0.00001; Nm = 0.21) and Minjiang River (Fst = 0.73, P < 0.00001; Nm = 0.18) groups, while low Fst value (Fst = 0.018, P > 0.05) and high rate of migration (Nm = 28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (<= 0.12) and high Nm values (>3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst >= 0.59; Nm < 1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. (C) 2009 Published by Elsevier B.V.
Resumo:
Ancherythroculter nigrocauda is a cyprinid fish endemic to the upper reaches of the Yangtze River, which has been reported to have 2 or 3 chambers to its air bladder. Morphological studies showed no differences between individuals with different types of air bladder, but did demonstrate geographical differences from different sources. After the completion of the Three Gorges Dam, it was expected that the population of this species would decrease, but artificial breeding and stocking is under consideration to protect this species from extinction. In the present study, mtDNA cytochrome b gene sequences were determined and analyzed for A. nigrocauda samples of different morphotypes and sources to identify their genetic differentiations, and thereby guide plans for the artificial propagation and conservation of this species. Haplotype diversity index values (h) and nucleotide diversity values (pi) for all the populations were found to be high indicating their high level genetic diversity. An analysis of molecular variance identified no differentiation among the studied populations. Therefore, we suggested that the individuals of different morphological types and geographical sources belong to the same species. To maintain its high level genetic diversity, it mill he necessary to use large and diverse sources of parental fish for artificial reproduction.
Resumo:
Reproductive behaviors are poorly known for the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis. In this study, the parentage of an isolated Yangtze finless porpoise population inhabiting the Yangtze Tian-e-Zhou Baiji National Natural Reserve is determined by analysis of microsatellite loci and mitochondrial DNA (mtDNA) control region sequences, and the porpoise's reproductive behaviors are studied. Overall 4 full parentage assignments and additional 3 single parentage assignments were determined for the population of 23 individuals. The analysis shows that their estimated reproductive cycle is shorter than that reported previously and there probably exists an overlapping between gestation and lactation period. The Study also shows that the female does not show fidelity to a particular male for breeding and vice versa, the oldest males did not monopolize mating and the dominance rank could not be so strict for the porpoise society. Moreover, the porpoise's mating pattern and relatedness among candidate parents are discussed here. These results provide important information for making guidelines of management and conservation for this protected population.
Resumo:
A base population of the bay scallop, Argopecten irradians irradians Lamarck, was produced by crossing two cultured bay scallop populations. After 1 year of rearing, the top 10% truncation selection of the top 10% (i=1.755) was carried out in the base population of about 1300 adults. A control parental group with a an identical number to the select parental group was randomly selected from the entire population before isolation of the select parental group. The result showed that, at the larval stage, the growth rate of larvae in the selected line was significantly higher than that of the control (P < 0.05), and that the genetic gain was 6.78%. Owing to the lower density of control at the spat stage, the mean shell length of the control line was larger than that of the select line at day 100. When the same density was adjusted between two lines in the grow-out stage (from day 100 to 160), the daily growth rate of the selected line was significantly higher than that of the control line (P < 0.05). Survival of the select line was significantly larger than that of the control line in the grow-out stage. In conclusion, the results obtained from this experiment indicate that selective breeding from a base population with a high genetic diversity established by mass spawning between different populations appears to be a promising method of genetic improvement in bay scallop, A. irradians irradians Lamarck.
Resumo:
Introduced species often start with limited genetic variability, which is problematic for selective breeding. The problem of inbreeding can be exasperated by hermaphroditism. The bay scallop Argopecten irradians irradians is a hermaphroditic species that has been introduced to and now supports a major aquaculture industry in China. Positive response to selection for fast growth was observed in one of the less inbred stocks in a previous study. In this study, we evaluated selection for the second generation to determine if response to selection can be sustained in this introduced population of a hermaphroditic species. Response to selection, realized heritability for the second generation, cumulative (over two generations), current (for the second generation) and residual (from the first generation) genetic gains were estimated by comparing three different types of lines: SS (selected for two generation), SC (selected for the first generation only) and CC (unselected for two generations). The SS line grew significantly faster (P < 0.05) than the other two lines, indicating that the second generation selection for faster growth is still effective. Response to selection and realized heritability for the second generation were 0.612 +/- 0.101 and 0.349 +/- 0.057, respectively, which are similar to those observed for the first generation. The cumulative, current, and residual gains were 17.56 +/- 5.30%, 10.63 +/- 2.46%, and 6.25 +/- 3.13%, respectively. The sustained response to selection for the second generation observed here suggests that considerable genetic variability exists in this population and that future efforts on selective breeding are likely to be fruitful. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1. Plateau pikas Ochotona curzoniae are considered a pest species on the Tibetan Plateau because they compete with livestock for forage and their burrowing could contribute to soil erosion. The effectiveness of pest control programmes in Tibet has not been measured, and it is not known whether changes in livestock management have exacerbated problems with plateau pikas or compromised their control. This study measured the impact of control programmes and livestock management for forage conservation on populations of plateau pikas in alpine meadow in Naqu District, central Tibet, during 2004 and 2005.2. Current techniques for controlling plateau pikas in spring cause large reductions in abundance, but high density-dependent rates of increase result in no differences between treated and untreated populations by the following autumn. Rates of increase from spring to autumn are not influenced by standing plant biomass or concurrent grazing by yaks Bos grunniens and Tibetan sheep Ovis aries.3. In autumn there was significantly lower biomass outside fenced areas with year-round livestock grazing compared with inside fenced areas with equivalent or higher numbers of plateau pikas but predominantly winter grazing by livestock. Inside fenced areas, control of plateau pikas in spring produced no detectable effect on standing plant biomass at the end of the following summer compared with uncontrolled populations of plateau pikas.4. Regardless of their initial density, populations of plateau pikas declined rapidly over winter outside fenced areas where there was very low standing plant biomass in autumn. However, inside fenced areas with higher plant biomass in autumn, low-density populations of plateau pikas declined more slowly than high-density populations.5. Synthesis and applications. Current control programmes have limited effect because populations of plateau pikas can recover in one breeding season. There was no apparent increase in forage production in areas where plateau pikas were controlled. However, plateau pikas appear to benefit from changes in grazing management, with low-density populations declining less over winter inside fenced areas than elsewhere. It was not evident that control programmes are warranted or that they will improve the livelihoods of Tibetan herders.
Resumo:
We analyse the physical origin of population inversion via continuous wave two-colour coherent excitation in three-level systems by dressing the inverted transition. Two different mechanisms are identified as being responsible for the population inversion. For V-configured systems and cascade (E) configured systems with inversion on the lower transition, the responsible mechanism is the selective trapping of dressed states, and the population inversion approaches the ideal value of 1. For Lambda-configured systems and Xi-configured systems with inversion on the upper transition, population inversion is based on the selective excitation of dressed states, with the population inversion tending towards 0.5. As the essential difference between these two mechanisms, the selective trapping of dressed states occurs in systems with strong decay into dressed states while the selective excitation appears in systems with strong decay out of dressed states.
Resumo:
The behavior of population transfer in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.
Resumo:
Sideband manipulation of population inversion in a three-level A atomic configuration is investigated theoretically. Compared with the case of a nearly monochromatic field, a population inversion between an excited state and a ground state has been found in a wide sideband intensity range by increasing the difference in frequency between three components. Furthermore, the population inversion can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field with respective to the phase of the central component. Changing the sum phase from 0 to pi, the population inversion between the excited state and the ground state can increase within nearly half of the sideband intensity range. At the same time, the sideband intensity range that corresponds to the system exhibiting inversion rho(00) > rho 11 also becomes wider evidently.
Resumo:
We demonstrate an ultrafast transient, ring-shaped population grating induced by an ultrashort hollow Gaussian laser bullet by solving the three-dimensional full-wave Maxwell-Bloch equations. Through adjusting the beam waist and the area of the pulse, we can control the number of lines and the period of the grating. Based on this coherent control scheme, a door to produce gratings with complex transverse structure is opened.
Resumo:
Coherent population accumulations of multiphoton transitions induced by an ultrashort pulse train in a two-level polar molecule are investigated theoretically by solving the density-matrix equations without invoking any of the standard approximations. It is shown due to the effects of permanent dipole moments, that the population accumulation of multiphoton transitions can be obtained in the polar molecule. Moreover, the population accumulations depend crucially on the relative phase between two sequential pulses, and the period in which the maximum population accumulation occurs is 2 pi/N in N-photon transitions.
Resumo:
An ultrafast transient population grating induced by a (1+1)-dimensional, ultrashort dipole soliton is demonstrated by solving the full-wave Maxwell-Bloch equations. The number of lines and the period of the grating can be controlled by the beam waist and the area of the pulse. Of interest is that a polarization grating is produced. A coherent control scheme based on these phenomena can be contemplated as ultrafast transient grating techniques.