3 resultados para body-environment

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is one of the very few investigating the dioxin body burden of a group of child-bearing-aged women at an electronic waste (e-waste) recycling site (Taizhou, Zhejiang Province) (24 +/- 2.83 years of age, 40% were primiparae) and a reference site (Lin'an city, Zhejiang Province, about 245 km away from Taizhou) (24 +/- 2.35 years of age, 100% were primiparae) in China. Five sets of samples (each set consisted of human milk, placenta, and hair) were collected from each site. Body burdens of people from the e-waste processing site (human milk, 21.02 +/- 13.81 pg WHO-TEQ(1998/g) fat (World Health Organization toxic equivalency 1998); placenta, 31.15 +/- 15.67 pg WHO-TEQ(1998/g) fat; hair, 33.82 +/- 17.74 pg WHO-TEQ(1998/g) dry wt) showed significantly higher levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas (PCDD/Fs) than those from the reference site (human milk, 9.35 +/- 7.39 pg WHO-TEQ(1998/g) fat, placenta, 11.91 +/- 7.05 pg WHO-TEQ(1998/g) fat; hair, 5.59 +/- 4.36 pg WHO-TEQ(1998/g) dry wt) and were comparatively higher than other studies. The difference between the two sites was due to e-waste recycling operations, for example, open burning, which led to high background levels. Moreover, mothers from the e-waste recycling site consumed more foods of animal origin. The estimated daily intake of PCDD/Fs within 6 months by breast-fed infants from the e-waste processing site was 2 times higher than that from the reference site. Both values exceeded the WHO tolerable daily intake for adults by at least 25 and 11 times, respectively. Our results implicated that e-waste recycling operations cause prominent PCDD/F levels in the environment and in humans. The elevated body burden may have health implications for the next generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polychaete Neanthes japonica is a species geographically specific in China and Japan with important scientific implication and commercial value. In this study, the relations of body weight, salinity and temperature to oxygen consumption and ammonia excretion of N. japonica were determined. Three different groups in body weight (large: 2.34 +/- 0.36 g, middle: 1.50 +/- 0.21 g and small: 0.62 +/- 0.12 g) were set for all experiments. Results show that the body weight is negatively related to the rates of oxygen consumption and ammonia excretion; and the relationship is significant. The oxygen consumption and ammonia excretion at 24A degrees C decreased at salinity from 5 to 30 and increased above 30, indicating that both lower and higher salinity are adverse and certain degree of salinity stress is necessary for enhancing the energy demand. At salinity 30, rising temperature from 18A degrees C to 30A degrees C, the oxygen consumption increased before 27A degrees C and then decreased. However, the relation of ammonia excretion and temperature seems more complex. Two-way ANOVA shows that salinity, temperature and body weight all have a significant effect on the oxygen consumption and ammonia excretion of the worm. Moreover, interaction between salinity/temperature and body weight is also significant. O:N (oxygen/nitrogen) ratio varies greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was designed to examine whether photoperiod alone was effective to induce seasonal regulations in physiology in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau noted for its extreme cold environment. Root voles were randomly assigned into either long photoperiod (LD; 16L: 8D) or short photoperiod (SD; 8L: 16D) for 4 weeks at constant temperature (20 degrees C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced thermogenic capacities in root voles, as indicated by elevated basal metabolic rate (BMR), nonshivering thermogenesis (NST), mitochondrial protein content and uncoupling protein-1 (UCP1) content in brown adipose tissue (BAT). Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in root voles. (c) 2006 Elsevier Inc. All rights reserved.