19 resultados para binding free enthalpy

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T-m = 50.2 +/- 0.2 degrees C and a folding enthalpy Delta H degrees(fold) = -49.0 +/- 2.1 kcal mol(-1). These values agree with values of T-m = 49.6 degrees C and Delta H degrees(fold) = -51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy Delta G degrees(bind) = -5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with Delta H degrees(bind) = -8.7 kcal mol(-1). Combination of enthalpy and free energy produce ail unfavorable entropy of -T Delta S degrees = +3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K-1 was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phenolic marine natural product is a kind of new potential aldose reductase inhibitors (ARIs). In order to investigate the binding mode and inhibition mechanism, molecular docking and dynamics studies were performed to explore the interactions of six phenolic inhibitors with human aldose reductase (hALR2). Considering physiological environment, all the neutral and other two ionized states of each phenolic inhibitor were adopted in the simulation. The calculations indicate that all the inhibitors are able to form stable hydrogen bonds with the hALR2 active pocket which is mainly constructed by residues TYR48, HIS110 and TRP111, and they impose the inhibition effect by occupying the active space. In all inhibitors, only La and its two ionized derivatives La_ion1 and La_ion2, in which neither of the ortho-hydrogens of 3-hydroxyl is substituted by Br, bind with hALR2 active residues using the terminal 3-hydroxyl. While, all the other inhibitors, at least one of whose ortho-sites of 3- and 6-hydroxyls are substituted by Br substituent which take much electron-withdrawing effect and steric hindrance, bind with hALR2 through the lactone group. This means that the Br substituent can effectively regulate the binding modes of phenolic inhibitors. Although the lactone bound inhibitors have relatively high RMSD values, our dynamics study shows that both binding modes are of high stability. For each inhibitor molecule, the ionization does not change its original binding mode, but it does gradually increase the binding free energy, which reveals that besides hydrogen bonds, the electrostatic effect is also important to the inhibitor–hALR2 interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To understand pharmacophore properties of pyranmycin derivatives and to design novel inhibitors of 16S rRNA A site, comparative molecular field analysis (CoMFA) approach was applied to analyze three-dimensional quantitative structure-activity relationship (3D-QSAR) of 17 compounds. AutoDock 3.0.5 program was employed to locate the orientations and conformations of the inhibitors interacting with 16S rRNA A site. The interaction mode was demonstrated in the aspects of inhibitor conformation, hydrogen bonding and electrostatic interaction. Similar binding conformations of these inhibitors and good correlations between the calculated binding free energies and experimental biological activities suggest that the binding conformations of these inhibitors derived from docking procedure were reasonable. Robust and predictive 3D-QSAR model was obtained by CoMFA with q(2) values of 0.723 and 0.993 for cross-validated and noncross-validated, respectively. The 3D-QSAR model built here will provide clear guidelines for novel inhibitors design based on the Pyranmycin derivatives against 16S rRNA A site. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report here the investigation of a novel description of specificity in protein-ligand binding based on energy landscape theory. We define a new term, intrinsic specificity ratio (ISR), which describes the level of discrimination in binding free energies of the native basin for a protein-ligand complex from the weaker binding states of the same ligand. We discuss the relationship between the intrinsic specificity we defined here and the conventional definition of specificity. In a docking study of molecules with the enzyme COX-2, we demonstrate a statistical correspondence between ISR value and geometrical shapes of the small molecules binding to COX-2. We further observe that the known selective (nonselective) inhibitors of COX-2 have higher (lower) ISR values. We suggest that intrinsic specificity ratio may be a useful new criterion and a complement to affinity in drug screening and in searching for potential drug lead compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel competition dialysis assay was used to investigate the structural selectivity of a series of substituted 2-(2-naphthyl)quinoline compounds designed to target triplex DNA. The interaction of 14 compounds with 13 different nucleic acid sequences and structures was studied. A striking selectivity for the triplex structure poly dA:[poly dT](2) was found for the majority of compounds studied. Quantitative analysis of the competition dialysis binding data using newly developed metrics revealed that these compounds are among the most selective triplex-binding agents synthesized to date. A quantitative structure-affinity relationship (QSAR) was derived using triplex binding data for all 14 compounds used in these studies. The QSAR revealed that the primary favorable determinant of triplex binding free energy is the solvent accessible surface area. Triplex binding affinity is negatively correlated with compound electron affinity and the number of hydrogen bond donors. The QSAR provides guidelines for the design of improved triplex-binding agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An immunosensor based on imaging ellipsometry and its potential applications was demonstrated in this paper. It has been proven a fast, reliable, and convenient method to quantify the thickness distribution of protein layers or detect protein concentration in solution. Combined with a protein chip, the immunosensor was able to detect multiple analytes simultaneously without any labeling. Preliminary results demonstrated how this immunosensor could be used to monitor several independent biospecific binding processes in real-time and in situ conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel disintegrin, jerdonatin, was purified to homogeneity from Trimeresurus jerdonii venom by gel filtration and reversed-phase high-pressure liquid chromatography. We isolated the cDNA encoding jerdonatin from the snake venom gland. Jerdonatin cDNA precursor,;encoded pre-peptide, metalloprotease and disintegrin domain. Jerdonatin is composed of 72 amino acid residues including 12 cysteines and the tripeptide sequence Arg-Gly-Asp (RGD), a well-known characteristic of the disintegrin family. Molecular mass of jerdonatin was determined to be 8011 Da by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Jerdonatin inhibited ADP- and collagen-induced human platelet aggregation with IC50 of 123 and 135 nM, respectively. We also investigated the effect of jerdonatin on the binding of B6D2F1 hybrid mice spermatozoa to mice zona-free eggs and their subsequent fusion. Jerdonatin significantly inhibited sperm-egg binding in a concentration-dependent manner, but had no effect on the fusion of sperm-egg. These results indicate that integrins on the egg play a role in mammalian fertilization. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed for the determination of interactions of metal ions and protein by using microdialysis sampling technique combined with pre-column derivation and reversed-phase ion-pair liquid chromatographic (HPLC analysis. Cu(II), Zn(II) and human serum albumin (HSA) were chosen as model metal ions and protein, respectively. The mixed solutions of metal ions and HSA with different molar ratios buffered with 0.1 M Tris-HCl containing 0.1 M NaCl at pH 7.43 were sampled with a mirodialysis probe by keeping perfusion rate at 1 mul/min and the temperature at 37 degreesC. The free concentrations of metal ions in microdialysates were assayed by precolumn derivatization with meso-tetra(4-sulfophenyl)-porphyrin (TPPS4) followed ion-pair HPLC analysis. The recovery (R) of microdialysis sampling was measured in vitro under similar conditions as 65.74% for Cu(II), 70.45% for Zn(II) with R.S.D. below 3.2%. The primary binding constants and number of binding site estimated by the Scatchard plot analysis are 5.04 x 10(6) M-1 and 0.85 for Cu(II), and 9.87 x 10(6) M-1 and 1.10 for Zn(II), respectively. The competition of Cu(II) and Zn(II) at the second binding site on HSA was investigated, and it was observed that there is a second site on HSA to bind Cu(II) and Zn(II), the affinity of Cu(II) is stronger than that of Zn(II) to this second site of HSA. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid beta peptide plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metal ions are highly enriched in cerebral amyloid deposits in AD and are proposed to be able to mediate A beta conformation. Therefore, a rapid, low-cost, and sensitive detection of metal-induced A beta aggregation and their relation to AD is clearly needed for the clinical diagnosis and treatment. In this report, we study metal-induced A beta aggregation by a rapid, label-free electrochemical method and monitor both the aggregation kinetics and the morphology in the absence or presence of Zn (II) and Cu (II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Ru(bpy)2dppz]2+ electrochemiluminescence (ECL) was studied, and it was used to investigate DNA interaction and develop a label-free ATP aptasensor for the first time. ECL of [Ru(bpy)2dppz]2+ is negligible in aqueous solution, and increases approximately 1000 times when [Ru(bpy)2dppz]2+ intercalates into the nucleic acid structure. The ECL switch behavior of [Ru(bpy)2dppz]2+ is ascribed to the intercalation that shields the phenazine nitrogens from the solvent and results in a luminescent excited state. The ECL switch by DNA was applied to investigate the interaction of [Ru(bpy)2dppz]2+ with herring sperm DNA. The calculated equilibrium constant (K) is 1.35 x 10(6) M(-1), and the calculated binding-site size (s) is 0.88 base pair, which is consistent with the reported values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel label-free method for the investigation of the adaptive recognition of small molecules by nucleic acid aptamers using capillary electrophoresis analysis. Cocaine and argininamide were chosen as model molecules, and the two corresponding DNA aptamers were used. These single-strand DNAs folded into their specific secondary structures, which were mainly responsible for the binding of the target molecules with high affinity and specificity. For molecular recognition, the nucleic acid structures then underwent additional conformational changes, while keeping the target molecules stabilized by intermolecular hydrogen bonds. The intrinsic chemical and physical properties of the target molecules enabled them to act as indicators for adaptive binding. Thus any labeling or modification of the aptamers or target molecules were made obsolete. This label-free method for aptamer-based molecular recognition was also successfully applied to biological fluids and therefore indicates that this approach is a promising tool for bioanalysis.