9 resultados para basolateral amygdala

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug-associated cue-induced relapse to drug seeking causes most difficulties of therapy for drug addiction. Addicts are exposed to two forms of environmental stimuli during drug-taking: contextual stimuli (e.g. a house in which the drug is consumed) and discrete stimuli (DS, e.g. a crack pipe or a syringe for drug). These stimuli become contextual cues and discrete cues, respectively. The incentive value of contextual cues plays a great role in opiates relapse. Compared with drug self-administration model, conditioned place preference (CPP) reflects the approach behavior for drug cues, not concerned with acquisition of operant behaviors. The present study aimed to investigate the role of basolateral amygdala (BLA) and hippocampus in the effect of opiates-related contextual cues using CPP model. Establishing DS-dependent or contextual cues-dependent CPP, the effect of BLA or hippocampus inactivation prior to training phase on acquisition of contextual cues-opiates association was evaluated. Inactivation prior to test phase was used to evaluate roles of BLA and hippocampus in expression of contextual cues-dependent morphine CPP. The main results were as follows: Inactivation of BLA or dorsal hippocampus selectively impaired acquisition of contextual cue-dependent CPP, but inactivation of ventral hippocampus had no impact on acquisition of either DS-dependent or contextual cue-dependent morphine CPP. Inactivation of BLA selectively inhibited expression of contextual cue-depended CPP. Inactivation of ventral hippocampus inhibited expression of both DS-dependent and contextual cue-dependent morphine CPP. These results suggest that BLA and dorsal hippocampus contribute to contextual cue association with opiates but not DS-opiates association. BLA and ventral hippocampus play important roles in incentive value of contextual cues. The present study provides more information for the neurological substrates underlying contextual cues associated with opiates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anterior gradient 2 (Agr2) genes encode secretory proteins, and play significant roles in anterior-posterior patterning and tumor metastasis. Agr2 transcripts were shown to display quite diverse tissue distribution in different species, and little was known about the cellular localization of Agr2 proteins. In this study, we identified an Agr2 homologue from gibe[ carp (Carassius auratus gibelio), and revealed the expression patterns and cellular localization during embryogenesis and in adult tissues. The full-length cDNA of CagAgr2 is 803 nucleotides (nt) with an open reading frame of 510 nt encoding 169 amino acids. The Agr2 C-terminus matches to the class I PDZ-interacting motif, suggesting that it might be a PDZ-binding protein. During embryogenesis, CagAgr2 was found to be transcribed in the mucus-secreting hatching gland from tailbud stage and later in the pharynx region, swim bladder and pronephric duct as revealed by RT-PCR and whole mount in situ hybridization. In the adult fish, its transcription was predominantly confined to the kidney, and lower transcription levels were also found in the intestine, ovary and gills. To further localize the Agr2 protein, the anti-CagAgr2 polyclonal antibody was produced and used for immunofluorescence observation. In agreement with mRNA expression data, the Agr2 protein was localized in the pronephric duct of 3dph larvae. In adult fish, Agr2 protein expression is confined to the renal collecting system with asymmetric distribution along the apical-basolateral axis. The data provided suggestive evidence that fish Agr2 might be involved in differentiation and secretory functions of kidney epithelium. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

一、大鼠海马-前额叶回路在学习记忆中的作用 解剖学研究证实大鼠和猴的海马结构(hippocampal formation, HF;本文‘海马 (hippocampus, Hip)’一词即指海马结构)和前额叶 (prefrontal cortex, PFC) 之间存在一条单向、同侧和单突触的神经回路,即海马-前额叶回路(Hip-PFC回路)。Hip和PFC均参与学习记忆等多种认知功能,PFC是工作记忆的关键脑区,而Hip是空间参考记忆的关键脑区。虽然人们已经对PFC和Hip进行了广泛深入的研究,但对Hip-PFC回路参与哪些认知功能还知之甚少。本研究的目的就是通过暂时阻断Hip-PFC回路,探讨其在学习和记忆中的作用。 在大鼠,Hip-PFC回路中的纤维主要从Hip腹部 (ventral hippocampus, VH)发出,投射到PFC的前边缘皮质(prelimbic cortex, PLC)、下边缘皮质 (infralimbic cortex, ILC) 和外侧前额叶 (lateral prefrontal cortex) 等亚区,其中PLC是Hip-PFC主要投射的区域。我们通过给动物安装慢性导管向脑内注射GABAA受体激动剂muscimol (MU) 阻断Hip-PFC回路。注射位点包括 ①双侧PLC,②双侧VH,③一侧VH和对侧PLC (VH-PLC)。我们首先观察了在PLC或VH局部注射MU对自由活动大鼠PLC和VH脑电功率的影响,并以此确定在行为实验中所用蝇蕈醇的剂量。然后采用T-迷宫空间交互延缓作业 (spatial delayed alternation task) 测试Hip-PFC回路被阻断的动物的空间工作记忆功能;采用被动回避作业 (passive avoidance task) 测试其情绪相关记忆的能力(训练前给药;24 h后重测试);采用Morris水迷宫作业 (Morris water maze task) 测试其空间参考记忆的能力(每天训练前给药;训练期(3 d)结束24 h后重测试)。结果表明:在大鼠PLC或VH局部注射0.5 μg/0.25μl MU后30 min显著抑制VH 和PLC的脑电功率 (VH, p < 0.01; PLC, p < 0.05 vs. PBS/baseline)。注射MU (0.5 μg/0.25μl) 到 ①双侧PLC、②双侧VH、③VH-PLC均显著降低动物在空间交互延缓作业 (All p < 0.001, vs. PBS) 和空间Morris水迷宫作业中的成绩 (All p < 0.05, vs. PBS),表明Hip-PFC回路在空间工作记忆(空间短时记忆)和在空间参考记忆(空间长时记忆)中均起重要作用。在空间交互延缓作业中,双侧PLC被抑制的大鼠的成绩显著低于双侧VH或VH-PLC被抑制的动物,说明PFC在空间工作记忆功能中占有主导地位。在被动回避作业中,双侧VH被抑制动物的回避反应的潜伏期显著短于对照动物 (p < 0.05 vs. PBS),说明双侧VH被抑制动物的情绪记忆受损;而双侧PLC或VH-PLC被抑制的动物其回避反应的潜伏期与对照动物无显著差异 (PLC, p > 0.9; VH-PLC, p > 0.3 vs. PBS),表明双侧PLC或VH-PLC被抑制的动物情绪记忆正常。被动回避作业的结果说明VH参与情绪记忆的形成,但Hip-PFC回路在情绪记忆形成中不起重要作用。 以上结果表明,大鼠Hip-PFC回路参与空间工作记忆和空间参考记忆而不是情绪记忆功能。情绪记忆的关键脑结构是杏仁复合体 (amygdala complex, AMC),VH与AMC有密切的纤维联系。VH被抑制的大鼠情绪记忆受损,说明情绪记忆可能与AMC-Hip回路有关。情绪记忆与空间记忆(参考记忆和工作记忆)在解剖上的分离说明,对于不同类型的记忆来说,其在脑内的信息加工过程是并行的。神经回路内部的信息加工过程则是串行的,回路上任何一个结构的破坏均可导致回路功能的损伤。本研究的结果为学习记忆的“多重记忆系统”理论和记忆信息加工的串行并行机制提供了新的实验证据。 二、芬克罗酮改善成年恒河猴空间工作记忆的谷氨酸机制 芬克罗酮是中科院昆明植物所郝小江等合成的取代吡咯烷酮类化合物。中科院昆明动物所蔡景霞等发现芬克罗酮能改善东莨菪碱、育亨宾等导致的多种动物的不同类型的学习记忆障碍,提高老年动物的学习记忆能力,尤其是老年猴的空间工作记忆。已证实芬克罗酮为部分钙激动剂,可使脑缺血沙土鼠脑内升高的谷氨酸降低,而使正常的沙土鼠海马胞外谷氨酸释放增加。那么芬克罗酮能否提高正常动物的学习记忆,其对正常动物学习记忆的提高是否与其增加谷氨酸的释放有关?本研究采用空间延缓反应作业和谷氨酸NMDA受体拮抗剂MK-801在正常成年猴恒河猴上探讨了以上问题。 结果表明,口服芬克罗酮可显著提高成年猴的空间工作记忆,其量效曲线呈倒‘U’形,符合许多促智药的量效特点。0.25 mg/kg和0.5 mg/kg为芬克罗酮的最佳有效剂量 (p < 0.05 vs. 安慰剂)。肌注MK-801 (0.1 mg/kg) 显著降低成年猴的空间工作记忆 (p < 0.01 vs. 安慰剂),而口服2.0 mg/kg和4.0 mg/kg的芬克罗酮则显著改善MK-801导致的工作记忆障碍 (p < 0.05 vs. MK-801)。芬克罗酮的所有测试剂量不影响猴在作业中的反应时 (p > 0.05 vs. 安慰剂),表明芬克罗酮在该剂量范围不影响动物的运动能力。 本研究结果提示,芬克罗酮可能通钙激动作用促进谷氨酸的释放,在一定剂量范围内提高胞外谷氨酸水平,提高正常动物的空间工作记忆等认知功能。 关键词:芬克罗酮,恒河猴,空间工作记忆,空间延缓反应作业,谷氨酸,MK-801

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the deficit of inhibition has become an important reason for explaining addiction. Response inhibition resembles the compulsive drug seeking behavior and it is the basement of addiction inhibition deficits. However, there were no enough evidence for the relationship between addiction and response inhibition deficits and the results of the neuro mechanisms studies remains unclear. Few studies has focused on the exploring the heroin users. Among those paradigms for study response inhibition deficits, stop signal is a very suitable model for the representation of compulsive drug seeking, but only a few researches has worked on this paradigm. In this study, we selected about 100 heroin abusers and had behaviour and neuro imaging scannings for investigating the response inhibition deficits. The behaviour researches found: first, the chronic heroin users had longer reaction time than control group and this reaction time were not affected by stop signals in heroin users. Second, heroin users had less waiting time than control group and they were more impulsive but less flexibility. Their erro monitoring and flexibale adjustment ability decreased. Third, the SSRT of heroin users was significantly longer than control group. These results suggested that the inhibition of heroin users were impaired. Further investigation showed that the SSRT of heroin users had positive correlation of four factor scores of ASI and the macro correlation coefficient was factor three of drug use. This correlation suggested that drug use was the main reason of inhibition deficits. fMRI results mainly focused on the ANOVA analysis for group difference. First, there was no intensity difference in M1 and SMA brain areas between the two groups. Second, heroin users had less activation in right dorsalateral prefrontal cortex, right inferior prefrontal cortex and anterior cingulated cortex, while in bilateral striatum and amygdala, heroin users had more activation than control group. The right prefrontal cortex was indentified as the main inhibition brain area. The anterior cingulated cortex has relationship with erro monitoring and amygdale was an important brain area for impulsivity and emotion control. The network of these brain areas was envovled in impulsivity and inhibition and it was suggested the mainly damaged network for heroin users’ disinhibition. We also investigated the gray matter changes of heroin users and found that chonic heroin use made their gray matter density decreased in prefrontal cortex (including bilateral dorsalateral prefrontal cortex, obital frontal cortex, inferior prefrontal cortex) and anterior cingulated cortex. The gray matter density in these brain regions had negative correlation with drug use duration. In conclusion, we indentified the disinhibition of heroin users and its neuro mechanism. Their compulsivity brain areas had more activation than control group and their inhibition brain areas had less activation than normal control. On the other side, the biological mechanism of this activation changes was the gray matter density decrease in these brain areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a heritable disorder. However, molecular genetics and related research area have not unmasked the nature and mechanisms of this disorder. Therefore, many researchers begin to explore the pathology mechanism from other approaches. High-risk study is one of the promising approaches. In this study, we mainly focused on facial emotion perception in schizophrenia and their non-psychotic first-degree relatives, and attempted to explore whether facial emotion perception is the potential biological marker of schizophrenia. This dissertation comprises 4 studies. In the first study, we conducted a meta-analysis on behavioral data of facial emotion perception in schizophrenia. Our findings showed that patients demonstrated general deficits in both facial emotion perception and facial processing tasks. In the second study, sixty-nine patients with schizophrenia and 56 of their first-degree relatives (33 parents and 23 siblings), and 92 healthy controls (67 younger and 25 older healthy controls) completed a set of facial emotion perception tasks. The results validated that patients with schizophrenia displayed general deficits in facial emotion perception. Study two also demonstrated that siblings of patients performed equally well compared to the corresponding younger healthy controls in all the facial emotion perception tasks, while the parents of patients behaved significantly worse than the corresponding older healthy controls in the composite index of facial emotion perception tasks. The results suggest that relatives of patients display more severely declining in facial emotion perception with the increasing of age. In the third study, we used an automated voxel-wise technique, activation likelihood estimation (ALE) to provide an objective, quantitative evaluation of facial emotion processing in schizophrenia. Our findings demonstrated a marked under-recruitment of the amygdala, accompanied by a substantial limitation in activation in schizophrenia throughout a ventral temporal-basal ganglia-prefrontal cortex ‘social-brain’ system may be central to the difficulties patients experience when processing facial emotion. In the last study, we did an fMRI study about facial emotion perception in 12 patients with schizophrenia, 12 non-psychotic siblings of patients and 12 healthy controls. The results suggest that siblings of patients demonstrate abnormal activation in a variety of brain areas, including prefrontal gyrus, insula, parahippocampal gyrus and superior temporal gyrus. Taken together, the current findings suggest facial emotion perception may be a potential biological marker of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although studies on placebo effect proved the placebo expectation established by pain-alleviating treatment could significantly alleviate later pain perception, or the placebo expectation established by anxiety-reducing treatment could significantly reduce the intensity of induced negative feelings, it is still unclear whether or not the placebo effect can occur in a transferable manner. That is, we still don’t know if the placebo expectation derived from pain-alleviating can significantly reduce later negative emotional arousal or not. Experiment 1: We compared the effect of the verbal expectation (purely verbal induction and without pain-alleviating reinforcement) with the reinforced expectation (building the belief in the placebo’s ataractic efficiency on unpleasant picture processing by secret reduction of the intensity of the pain-evoking stimulus) on the negative emotion. The results showed that the expectation, which was reinforced by actual analgesia, was transferable and could produce significant placebo effect on negative emotional arousal. However, the expectation that was merely induced by verbal instruction did not have such power. Experiment 2 both examined the direct analgesic effect of the placebo on the sensory pain (how strong is the pain stimulus) and emotional pain (how disturbing is the pain stimulus) and the transferable ataractic effect of the placebo on the negative emotion (how disturbing is the emotional picture stimulus), and further proved that the placebo expectation that was established from pain-reducing reinforcement not only induced significant placebo effect on pain, but also significant placebo effect on unpleasant feeling. These results support the viewpoint that the reduction of affective pain based on the conditioning mechanism plays an important role in the placebo analgesia, but can’t explain the transferred placebo effect on visual unpleasantness. Experiment 3 continued to use the paradigm of the reinforced expectation group and recorded the EEG activities, the data showed that the transferable placebo treatment was accompanied with decreased P2 amplitude and increased N2 distributed, and significant differences between the transferable placebo condition and the control condition (i.e., P2 and N2) were observed within the first 150-300 ms, a duration brief enough to rule out the possibility that differences between the two conditions merely reflect a bias “to try to please the investigator. In Experiment 4, we selected the placebo responders in the pre-experiment and let them to go through the formal fMRI scan. The results found that the transferable placebo treatment reduced the negative emotional response, emotion-responsive regions such as the amygdala, insula, anterior cingulate cortex and the thalamus showed an attenuated activation. And in the placebo condition, there was an enhanced activation in the subcollosal gyrus, which may be involved in emotional regulation. In conclusion, the transferable placebo treatment induced the reliable placebo effect on the behavior, EEG activity and bold signal, and we attempted to discuss the pychophysiological mechanism based on the positive expectancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was undertaken to investigate the effect of emotional stress on humoral immunoactivity and to examine whether the sympathetic nervous system was involved in the immunomodulation. In the present study, two types of emotional stressors were used. One was footshock apparatus used to cause the rats which were given footshock before, emotional stressed; the other was an empty water bottle used to cause the rats which were trained to drink water at two set times each day, emotional stressed. The effect of emotional stress on the primary immune function (anti-ovallum antibody level and spleen index), the endocrine response (corticosterone level, epinephrine and norepinephrine level), the behavioral changes (freezing, defecation, grooming and attacking behavior) were investigated. The main results were: 1. Two types of emotional stress significantly increased the level of plasma corticosterone, norepinephrine and epinephrine, as well as freezing, defecation and attacking behavior. 2. Two types of emotional stress significantly decreased the level of anti-ovallum antibody. A negative correlation between catecholamine level (epinephrine and norepinephrine) and antibody level or spleen index was found. 3. β-adrenergic receptor antagonist propranolol could reverse the immunomodulation induced by emotional stress. 4. After two types of emotional stress, c-fos expression was observed in the following brain areas or nucleus; arcuate nucleus, anterior commissure nucleus, diffuse part of dorsalmedial nucleus hypothalamus, lateral dorsal nucleus thalamus, medial nucleus amygdala, solitary nucleus, frontal cortex and cingulum. These brain areas and nucleus are involved in the central modulation of the autonomic nervous system. Taken together, these findings demonstrate that emotional stress can suppress humoral immunity and the activation of the sympathetic nervous system is involved in the humoral immunomodulation induced by emotional stress.