20 resultados para autosomal recessive
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Neurotrypsin is one of the extra-cellular serine proteases that are predominantly expressed in the brain and involved in neuronal development and function. Mutations in humans are associated with autosomal recessive non-syndromic mental retardation (MR). We studied the molecular evolution of neurotrypsin by sequencing the coding region of neurotrypsin in 11 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results demonstrated a strong functional constraint of neurotrypsin that was caused by strong purifying selection during primate evolution, an implication of an essential functional role of neurotrypsin in primate cognition. Further analysis indicated that the purifying selection was in fact acting on the SRCR domains of neurotrypsin, which mediate the binding activity of neurotrypsin to cell surface or extracellular proteins. In addition, by comparing primates with three other mammalian orders, we demonstrated that the absence of the first copy of the SRCR domain (exon 2 and 3) in mouse and rat was due to the deletion of this segment in the murine lineage. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, ktonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. Copyright (C) 2002 S. KargerAG, Basel.
Resumo:
Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equits burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
Conserved chromosomal segments in the black rhinoceros, Diceros bicornis (DB1, 2n = 84), and its African sister-species the white rhinoceros, Ceratotherim simum (CSI, 2n = 82), were detected using Burchell's zebra (Equus burchellii, EBU, 2n = 44) chromosome-specific painting probes supplemented by a subset of those developed for the horse (Equus caballus, ECA, 2n = 64). In total 41 and 42 conserved autosomal segments were identified in C simum and D. bicornis respectively. Only 21 rearrangements (20 fissions and I fusion) are necessary to convert the Burchell's zebra karyotype into that of the white rhinoceros. One fission distinguishes the D. bicornis and C simum karyotypes which, excluding hetero- chromatic differences, are identical in all respects at this level of resolution. Most Burchell's zebra chromosomes correspond to two rhinoceros chromosomes although in four instances (EBU 18, 19, 20 and 21) whole chromosome synteny has been retained among these species. In contrast, one rhinoceros chromosome (DBI1, CSI1) comprises two separate Burchell's zebra chromosomes (EBU11 and EBU17). In spite of the high diploid numbers of the two rhinoceros species their karyotypes are surprisingly conserved offering a glimpse of the putative ancestral perissodactyl condition and a broader understanding of genome organization in mammals. Copyright (C) 2003 S. Karger AG, Base
Resumo:
Cross-species chromosome painting with probes derived from flow-sorted dog and human chromosomes was used to construct a high-resolution comparative map for the pig. In total 98 conserved autosomal segments between pig and dog were detected by probes specific for the 38 autosomes and X Chromosome of the dog. Further integration of our results with the published human-dog and cat-dog comparative maps, and with data from comparative gene mapping, increases the resolution of the current pig-human comparative map. It allows for the conserved syntenies detected in the pig, human, and cat to be aligned against the putative ancestral karyotype of eutherian mammals and for the history of karyotype evolution of the pig lineage to be reconstructed. Fifteen fusions, 17 fissions, and 23 inversions are required to convert the ancestral mammalian karyotype into the extant karyotype of the pig.
Resumo:
Chromosomal homologies have been established between the Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and five ovine species: wild goat (Capra aegagrus, CAE, 2n = 60), argall (Ovis ammon, OAM, 2n = 56), snow sheep (Ovis nivicola, ONI, 2n = 52), red goral (Naemorhedus cranbrooki, NCR, 2n = 56) and Sumatra serow (Capricornis sumatraensis, CSU, 2n = 48) by chromosome painting with a set of chromosome-specific probes of the Chinese muntjac. In total, twenty-two Chinese muntjac autosomal painting probes detected thirty-five homologous segments in the genome of each species. The chromosome X probe hybridized to the whole X chromosomes of all ovine species while the chromosome Y probe gave no signal. Our results demonstrate that almost all homologous segments defined by comparative painting show a high degree of conservation in G-banding patterns and that each speciation event is accompanied by specific chromosomal rearrangements. The combined analysis of our results and previous cytogenetic and molecular systematic results enables us to map the chromosomal rearrangements onto a phylogenetic tree, thus providing new insights into the karyotypic evolution of these species.
Resumo:
Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker-based analysis reveals cattle-specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mY(cattle) = 2.66 +/- 0.53% and Q(cattle) = 0.69 +/- 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai-Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak-cattle hybridization is primarily driven to produce F-1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make-up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.
Resumo:
Congenital microphthalmia is a developmental ocular disorder and might be caused by the mutations in the genes involved in eye development. To uncover the genetic cause in a six-generation Chinese pedigree with autosomal dominant congenital microphthalmia
Resumo:
Mutations in the long-range limb-specific cis-regulator (ZRS) could cause ectopic shh gene expression and are responsible for preaxial polydactyly (PPD). In this study, we analyzed a large Chinese isolated autosomal dominant PPD pedigree. By fine mapping
Resumo:
To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6-10, 12-22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1-5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1-5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The Chinese long-tailed mole (Scaptonyx fusicaudus) closely resembles American (Neurotrichus gibbsii) and Japanese (Dymecodon pilirostris and Urotrichus talpoides) shrew moles in size, appearance, and ecological habits, yet it has traditionally been classified either together with (viz subfamily Urotrichinae) or separately (tribe Scaptonychini) from the latter genera (tribe Urotrichini sensu lato). We explored the merit of these competing hypotheses by comparing the differentially stained karyotypes of S.fusicaudus and N. gibbsii with those previously reported for both Japanese taxa. With few exceptions, diploid chromosome number (2n = 34), fundamental autosomal number (FNa = 64), relative size, and G-banding pattern of S. fusicaudus were indistinguishable from those of D. pilirostris and U. talpoides. In fact, only chromosome 15 differed significantly between these species, being acrocentric in D. pilirostris, subtelocentric in U. talpoides, and metacentric in S. fusicaudus. This striking similarity is difficult to envisage except in light of a shared common ancestry, and is indicative of an exceptionally low rate of chromosomal evolution among these genera. Conversely, the karyotype of N. gibbsii deviates markedly in diploid chromosome and fundamental autosomal number (2n = 38 and FNa = 72, respectively), morphology, and G-banding pattern from those of Scaptonyx and the Japanese shrew moles. These differences cannot be explained by simple chromosomal rearrangements, and Suggest that rapid chromosomal reorganization Occurred ill the karyotype evolution of this species, possibly due to founder or bottleneck events.
Resumo:
A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wildtype rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wildtype. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.
Resumo:
Background: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. Results: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/ 21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. Conclusion: Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.
Resumo:
株高是农作物的重要农艺性状之一,适度矮化有利于农作物的耐肥、抗倒、高产等。20世纪50年代,以日本的赤小麦为矮源的半矮秆小麦的培育和推广,使得世界粮食产量显著增长,被誉为“绿色革命”。迄今为止,已报到的麦类矮秆、半矮秆基因已达70多个,但由于某些矮源极度矮化或者矮化的同时伴随不利的农艺性状,使得真正运用于育种实践的矮源较少。因此,发掘和鉴定新的控制麦类作物株高的基因,开展株高基因定位、克隆及作用机理等方面的研究,对实现麦类作物株高的定向改良,具有重要的理论意义和应用价值。簇毛麦(Dasypyrum villosum,2n=14,VV)是禾本科簇毛麦属一年生二倍体异花授粉植物,为栽培小麦的近缘属。本课题组在不同来源的簇毛麦杂交后代中发现了一株自然突变产生的矮秆突变体。观察分析了该突变体的生物学特性,对矮秆性状进行了遗传分析,对茎节细胞长度、花粉的活力进行了细胞学观察,考察了该突变体内源赤霉素含量及不同浓度外施赤霉素对突变体的作用,分析了赤霉素生物合成途径中的内根贝壳杉烯氧化酶(KO)和赤霉素20氧化酶(GA20ox)的转录水平,对赤霉素20氧化酶和赤霉素3-β羟化酶(GA3ox)进行了克隆和序列分析,并对GA20ox进行了原核表达和表达的组织特异性研究。主要研究结果如下:1. 该突变体与对照植株在苗期无差异,在拔节后期才表现出植株矮小,相对对照植株,节间伸长明显受到抑制,叶鞘长度基本不变。在成熟期,对照植株的平均株高为110cm,而突变株的平均株高为32cm,仅为对照植株的1/3 左右。除了株高变矮以外,在成熟后期,突变株还表现一定程度的早衰和雄性不育。I2-KI染色法观察花粉活力结果表明,对照植株花粉90%以上都是有活力的,而突变植株的花粉仅20%左右有活力。2. 突变株与对照植株的杂交F1代均表现正常株高,表明该突变性状为隐性突变。F1代植株相互授粉得到的168株F2代植株中,株高出现分离,正常株高(株高高于80cm)与矮秆植株(株高矮于40cm)的株数比为130:38,经卡方检验,其分离比符合3:1的分离比,因此推测该突变体属于单基因的隐性突变。3. 用ELISA方法检测突变株和对照植株的幼嫩种子中内源性生物活性赤霉素(GA1+3)含量,结果表明突变株的赤霉素含量为36 ng/ml,而对照植株的赤霉素含量为900 ng/ml。对突变株外施赤霉素,发现矮秆突变株的株高和花粉育性均可得到恢复。这些结果表明该突变株为赤霉素缺陷型突变。4. 用荧光定量PCR方法比较突变株与对照植株中内根贝壳杉烯氧化酶和赤霉素20氧化酶的转录水平,结果表明突变株的KO转录水平比对照植株分别提高了6倍(苗期)和16倍(成熟期),突变株的GA20ox转录水平与对照植株在苗期无明显差异,在成熟期突变株较对照植株则提高了10倍左右。这些结果表明该矮秆突变体与赤霉素的生物合成途径密切相关,而且极有可能在赤霉素的生物合成途径早期就发生了改变。5. 以簇毛麦总基因组为模板,同源克隆了GenBank登录号为EU142950,RT-PCR分离克隆了簇毛麦的GA3ox基因cDNA全长序列,分析结果表明该cDNA全长1206bp,含完整编码区1104bp,推测该序列编码蛋白含368个氨基酸残基,分子量为40.063KD,等电点为6.27。预测的氨基酸序列含有双加氧酶的活性结构,在酶活性中心2个Fe离子结合的氨基酸残基非常保守。该序列与小麦、大麦和水稻的GA3ox基因一致性分别为98%、96%、86%。基因组序列与cDNA序列在外显子部分一致,在478-715bp和879-1019bp处分别含238bp和140bp的内含子。6. 通过RT-PCR技术克隆了簇毛麦的GA20ox基因全长,命名为DvGA20ox,GenBank登录号为EU142949。该基因全长1080个碱基,编码359个氨基酸,具有典型的植物GA20ox基因结构。该基因编码的蛋白质与小麦、大麦、黑麦草等GA20ox蛋白的同源性分别为98%,97% 和91%。该序列重组到原核表达载体pET-32a(+)上,将获得的重组子pET-32a(+)-DvGA20ox转化大肠杆菌BL21pLysS后用IPTG进行诱导表达。SDS-PAGE分析表明,DvGA20ox基因在大肠杆菌中获得了高效表达,融合蛋白分子量为55kDa。定量PCR分析表明,该基因在簇毛麦不同器官中的表达差异明显:叶片中表达水平最高,根部表达水平次之,茎部和穗中表达较弱。在外施赤霉素后,该基因的表达水平在两小时以后急剧下降,表明该基因的表达受自身的反馈调节。本研究结果认为,(1)该簇毛麦矮秆突变体为单基因的隐性突变;(2)该矮秆突变体为赤霉素敏感突变,内源赤霉素含量检测表明突变体的内源性赤霉素含量仅为对照植株的1/30;(3)荧光定量PCR结果表明突变株的赤霉素生物合成途径的关键酶基因表达水平比对照植株高,而且突变植株的赤霉素生物合成改变很可能发生在赤霉素生物合成途径的早期;(4)GA20ox有表达的组织特异性,且受到自身产物的反馈调节。 Plant height is an impotrant agronomic trait of triticeae crops.Semi-dwarf cropcultivars, including those of wheat, maize and rice, have significantly increased grainproduction that has been known as “green revolution”. The new dwarf varieties couldraise the harvest Index at the expense of straw biomass, and, at the sametime, improvelodging resistance and responsiveness to nitrogen fertilizer. Moreover, dwarf traits ofplant are crucial for elucidating mechanisms for plant growth and development aswell. In many plant species, various dwarf mutants have been isolated and theirmodles of inheritance and physiology also have been widely investigated.The causesfor their dwarf phenotypes were found to be associated with plant hormones,especially, gibberellins GAs.Dasypyrum villosum Candargy (syn.Haynaldia villosa) is a cross-pollinating,diploid (2n = 2x = 14) annual species that belongs to the tribe Triticeae. It is native toSouthern Europe and West Asia, especially the Caucasuses, and grows underconditions unfavorable to most cultivated crops. The genome of D. villosum,designated V by Sears, is considered an important donor of genes to wheat for improving powdery mildew resistance, take-all, eyespot, and plant and seed storageprotein content. A spontaneous dwarf mutant was found in D. villosum populations.The biological character and modles of inheritance of this dwarf mutant are studied.The cell length of stem cell is observed. The influence of extraneous gibberellin tothe dwarf mutant is also examined; the transcript level of key enzyme of gibberellinbiosynthesis pathway in mutant and control plants is compared. GA3ox and GA20oxare cloned and its expression pattern is researched.1. The dwarf mutant showed no difference with control plants at seedlingstage.At mature stage, the average height of control plants were 110cm and the dwarfplants were 33cm. The height of the mutant plant was only one third of the normalplants due to the shortened internodes. Cytology observation showed that theelongation of stem epidermal and the parenchyma cells were reduced. The dwarfmutant also shows partly male sterile. Pollen viability test indicates that more than80% of the pollen of the mutant is not viable.2. The inheritance modle of this dwarf mutant is studied. All The F1 plantsshowed normal phenotype indicating that the dwarfism is controlled by recessivealleles. Among the 168 F2 plants, there are 130 normal plants and 30 dwarf plants, thesegregation proportion accord with Mendel’s 3:1 segregation. We therefore proposethat this dwarf phenotype is controlled by a single recessive gene.3. Quantitative analyses of endogenous GA1+3 in the young seeds indicated thatthe content of GA1+3 was 36ng/ml in mutant plants and 900ng/ml in normal plants.The endogenous bioactive GA1+3 in mutant plants are only about 1/30 of that innormal plants. In addition, exogenously supplied GA3 could considerably restore themutant plant to normal phenotype. These results showed that this mutant wasdefective in the GA biosynthesis.4. More than ten enzymes are involved in GA biosynthesis. KO catalyzes thefirst cytochrome P450-mediated step in the gibberellin biosynthetic pathway and themutant of KO lead to a gibberellin-responsive dwarf mutant. GA20ox catalyze therate-limited steps so that their transcript level will influence the endogenous GAbiosynthesis and modifies plant architecture. The relative expression levels of genesencoding KO and GA20ox were quantified by real time PCR to assess whether thechanges in GA content correlated with the expression of GA metabolism genes andwhere the mutant occurred during the GA biosynthesis pathway. In mutant plants,the transcript levels of KO increased about 6-fold and 16-fold at the seedling stage and elongating stage respectively comparing with the normal plants. For theseedlings, there was no notable difference in the expression of GA20ox betweenmutant and normal plants. At the elongating stage, GA20ox transcript increased 10times in mutant plants, suggesting that the GA biosynthesis pathway in mutant plantshad changed from the early steps rather than the late steps.5. A full length cDNA of D. villosum gibberellin 3β-hydroxylase homology(designated as DvGA3ox) was isolated and consisted of 1206bp containing an openreading frame of 1104bp encoding 368 predicted amino acid residues. Identityanalysis showed that the gibberellin 3β-hydroxylase nucleotide sequence shared 98%,96% and 86% homology with that of wheat, barley and rice. The predicted peptidecontained the active-site Fe of known gibberellin 3β-hydroxylase and the regionhomologous to wheat, barley and Arabidopsis. The genomic clone of gibberellin3β-hydroxylase has two introns.6. The full-length cDNA of D. villosum gibberellin 20 oxidase (designated asDvGA20ox) was isolated and consisted of 1080-bp and encoded 359 amino acidresidues with a calculated mol wt of 42.46 KD. Comparative and bio-informaticsanalyses revealed that DvGA20ox had close similarity with GA20ox from otherspecies and contained a conserved LPWKET and NYYPXCQKP regions. Tissueexpression pattern analysis revealed DvGA20ox expressed in all the tissues that wereexamined and the highest expression of DvGA20ox in expanding leaves followed byroots. Heterologous expression of this cDNA clone in Escherichia coli gave a fusionprotein that about 55KD. Transcript levels of DvGA20ox dramatically reduced twohours after application of biologically active GA3, suggesting that the biosynthesis ofthis enzymes might be under feedback control.