5 resultados para audio-visual methods
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The detection performance regarding stationary acoustic monitoring of Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis was compared to visual observations. Three stereo acoustic data loggers (A-tag) were placed at different locations near the confluence of Poyang Lake and the Yangtze River, China. The presence and number of porpoises were determined acoustically and visually during each 1-min time bin. On average, porpoises were acoustically detected 81.7 +/- 9.7% of the entire effective observation time, while the presence of animals was confirmed visually 12.7 +/- 11.0% of the entire time. Acoustic monitoring indicated areas of high and low porpoise densities that were consistent with visual observations. The direction of porpoise movement was monitored using stereo beams, which agreed with visual observations at all monitoring locations. Acoustic and visual methods could determine group sizes up to five and ten individuals, respectively. While the acoustic monitoring method had the advantage of high detection probability, it tended to underestimate group size due to the limited resolution of sound source bearing angles. The stationary acoustic monitoring method proved to be a practical and useful alternative to visual observations, especially in areas of low porpoise density for long-term monitoring.
Resumo:
要测量出一组特征点分别在两个空间坐标系下的坐标 ,就可以求解两个空间目标间的位姿关系 .实现上述目标位姿测量方法的前提条件是要保证该组特征点在不同坐标系下 ,其位置关系相同 ,但计算误差的存在却破坏了这种固定的位置关系 .为此 ,提出了两种基于模型的三维视觉方法——基于模型的单目视觉和基于模型的双目视觉 ,前者从视觉计算的物理意义入手 ,通过简单的约束迭代求解实现模型约束 ;后者则将简单的约束最小二乘法和基于模型的单目视觉方法融合在一起来实现模型约束 .引入模型约束后 ,单目视觉方法可以达到很高的测量精度 .而基于模型的双目视觉较传统的无模型立体视觉方法位移精度提高有限 ,但姿态精度提高很多
Resumo:
This paper describes a portable recording system and methods for obtaining chronic recordings of single units and tracking rhesus monkey behavior in an open field. The integrated system consists of four major components: (1) microelectrode assembly; (2) h
Resumo:
It is important for practical application to design an effective and efficient metric for video quality. The most reliable way is by subjective evaluation. Thus, to design an objective metric by simulating human visual system (HVS) is quite reasonable and available. In this paper, the video quality assessment metric based on visual perception is proposed. Three-dimensional wavelet is utilized to decompose video and then extract features to mimic the multichannel structure of HVS. Spatio-temporal contrast sensitivity function (S-T CSF) is employed to weight coefficient obtained by three-dimensional wavelet to simulate nonlinearity feature of the human eyes. Perceptual threshold is exploited to obtain visual sensitive coefficients after S-T CSF filtered. Visual sensitive coefficients are normalized representation and then visual sensitive errors are calculated between reference and distorted video. Finally, temporal perceptual mechanism is applied to count values of video quality for reducing computational cost. Experimental results prove the proposed method outperforms the most existing methods and is comparable to LHS and PVQM.