140 resultados para atomic fountain clock

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a method to generate an ultra-slow atomic beam by velocity selective resonance (VSR). A VSR experiment on a metastable helium beam in a magnetic field is presented and the results show that the transverse velocity of the defected beam can be cooled and precisely controlled to less than the recoil velocity, depending on the magnitude of the magnetic field. We extend this idea to a cold atomic cloud to produce an ultra-slow Rb-87 beam that can be used as a source of an atomic fountain clock or a space clock.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用拉曼光场代替喷泉原子钟的微波腔实现拉曼喷泉原子钟。将分离拉曼光场技术与冷原子喷泉技术相结合,避免了在真空腔内放置微波腔,简化了真空系统,同时还保持了很高的准确度。采用半经典理论研究了冷原子喷泉与拉曼光场的相互作用过程,得到了冉赛(Ramsey)条纹。比较了拉曼喷泉原子钟与热铯束拉曼原子钟,前者有更小的体积和功耗,其精度可能达到或超过商用小铯钟。还比较了拉曼喷泉原子钟与微波喷泉原子钟的差别,分析了光子反冲的影响,提出利用同向传播和相向传播的两台拉曼原子钟测量精细结构常数。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

对自行研制的激光冷却铷原子喷泉钟的微波谐振腔进行了分析和设计,确定了需要的微波谐振腔基本参数。对影响微波谐振腔共振频率的因素进行了分析和研究,得到了共振频率随环境因素的变化规律。这些对调节微波腔共振频率和提高原子钟的准确度有重要意义。还对研制的微波谐振腔进行了测试,结果表明微波谐振腔的性能满足激光冷却铷原子喷泉钟的要求。由测试结果进一步估算了微波谐振腔引起的横向腔相移。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an experimental scheme of a cold atom space clock with a movable cavity. By using a single microwave cavity, we find that the clock has a significant advantage, i.e. the longitudinal cavity phase shift is eliminated. A theoretical analysis has been carried out in terms of the relation between the atomic transition probability and the velocity of the moving cavity by taking into account the velocity distribution of cold atoms. The requirements for the microwave power and its stability for atomic pi/2 excitation at different moving velocities of the cavity lead to the determination of the proper working parameters of the rubidium clock in frequency accuracy 10(-17). Finally, the mechanical stability for the scheme is analysed and the ways of solving the possible mechanical instability of the device are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is the first time in China that the phase variations and phase shift of microwave cavity in a miniature Rb fountain frequency standard are studied, considering the effect of imperfect metallic walls. Wall losses in the microwave cavity lead to small traveling wave components that deliver power from the cavity feed to the walls of cavity. The small traveling wave components produce a microradian distribution of phase throughout the cavity ity, and therefore distributed cavity phase shifts need to be considered. The microwave cavity is a TE011 circular cylinder copper cavity, with round cut-hole of end plates (14mm in diameter) for access for the atomic flux and two small apertures in the center of the side wall for coupling in microwave power. After attenuation alpha is calculated, field variations in cavity are solved. The field variations of the cavity are given. At the same time, the influences of loaded quality factor QL and diameter/height (2a/d) of the microwave cavity on the phase variations and phase shift are considered. According to the phase variation and phase shift of microwave cavity we select the parameters of cavity, diameter 2a = 69.2mm, height d = 34.6mm, QL = 5000, which will result in an uncertainty delta(Delta f / f0 ) < 4.7 x 10(-17) and meets the requirement for the miniature Rb fountain frequency standard with accuracy 10(-15).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical deformations of nickel nanowire subjected to uniaxial tensile strain at 300 K are simulated by using molecular dynamics with the quantum corrected Sutten-Chen many-body force field. We have used common neighbor analysis method to investigate the structural evolution of Ni nanowire during the elongation process. For the strain rate of 0.1%/ps, the elastic limit is up to about 11% strain with the yield stress of 8.6 GPa. At the elastic stage, the deformation is carried mainly through the uniform elongation of the distances between the layers (perpendicular to the Z-axis) while the atomic structure remains basically unchanged. With further strain, the slips in the {111} planes start to take place in order to accommodate the applied strain to carry the deformation partially, and subsequently the neck forms. The atomic rearrangements in the neck region result in a zigzag change in the stress-strain curve; the atomic structures beyond the region, however, have no significant changes. With the strain close to the point of the breaking, we observe the formation of a one-atom thick necklace in Ni nanowire. The strain rates have no significant effect on the deformation mechanism, but have some influence on the yield stress, the elastic limit, and the fracture strain of the nanowire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and competitive adsorption of collagen and bovine serum albumin (BSA) were directly visualized and quantified using atomic force microscopy (AFM) and imaging ellipsometry. Chemically modified silicon surfaces were used as hydrophilic and hydrophobic substrates. The results showed that collagen and BSA in single component solution adsorbed onto a hydrophobic surface two times more than that onto a hydrophilic surface. The competitive adsorption between collagen and BSA showed that serum albumin preferentially adsorbed onto a hydrophobic surface, while collagen on a hydrophilic surface. In the binary solution of BSA (1 mg/ml BSA) and collagen (0.1 mg/ml), nearly 100% of the protein adsorbed onto the hydrophobic surface was BSA, but on the hydrophilic surface only about 6% was BSA. Surface affinity was the main factor controlling the competitive adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggregates in lysozyme solution with different NaCl concentration were investigated by Atomic Force Microscope (AFM). The AFM images show that there exist lysozyme monomers, n-mers and clusters in lysozyme solution when the conditions are not suitable for crystal growth. In favorable conditions for crystal growth, the lysozyme clusters disappear and almost only monomers exist in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural frequencies of a cantilever probe can be tuned with an attached concentrated mass to coincide with the higher harmonics generated in a tapping-mode atomic force microscopy by the nonlinear tip-sample interaction force. We provide a comprehensive map to guide the choice of the mass and the position of the attached particle in order to significantly enhance the higher harmonic signals containing information on the material properties. The first three eigenmodes can be simultaneously excited with only one carefully positioned particle of specific mass to enhance multiple harmonics. Accessing the interaction force qualitatively based on the high-sensitive harmonic signals combines the real-time material characterization with the imaging capability. (C) 2008 American Institute of Physics.