154 resultados para atmospheric corrosion

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Susceptibility to stress corrosion cracking of X56 steel and its relationship with hydrogen permeation behaviour in atmospheric environment containing H2S was investigated by hydrogen permeation tests at a slow strain rate. The results show that: the fracture strain decreases with the decrease of strain rate under the same experimental conditions; the fracture strain also decreases with the increase of H2S concentration under the same strain rate, and the increased concentration of H2S has no significant effect on the hydrogen permeation in the first wet, etc. dry cycle, however has lead to increased hydrogen permeation in the later cycles. The SEM images of the fractured surfaces show clear evidences of enhanced stress corrosion cracking susceptibility by H2S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen permeation behaviours of high strength steel 35CrMo under different cyclic wet-dry conditions have been investigated by using Devanathan-Stachurski's technique. Four electrolytes were used: distilled water, seawater, seawater containing 1500 ppm H2S and seawater containing 0.03 mol L-1 SO2. The corrosion weight loss of 35CrMo in the wet-dry cycles was measured simultaneously. The experimental results show that hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles and the permeation current density during a wet-dry cycle showed a maximum during the drying process. The hydrogen permeation was obviously promoted by Cl- ions, H2S and SO2. The hydrogen permeation in the real marine atmosphere has also been investigated. There is a clear correlation between the amount of hydrogen permeated and the corrosion weight losses. Results show the importance of hydrogen permeation that merits further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CORROSION; WATER; SPECTROSCOPY; CHLORIDE; ZINC; NUCLEATION; INTERFACE; ELECTRODE; SURFACES; GROWTH

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CORROSION; MECHANISM; WATER; ZINC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of hot-dipped zinc and zinc-aluminum alloy coatings were introduced. Exposure tests of the steels with these coatings were conducted in the offshore atmosphere in Qingdao and Xiamen for 12 years separately. Effects of the coating thickness, alloy composition and atmospheric environment on the corrosion performance were studied. Results of the onsite exposure tests were compared with the results of a previous indoor salt spray accelerated corrosion tests. The study supports that zinc-aluminum alloy coatings are useful in providing better corrosion resistance and can be further developed for future applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion rate of low alloy steel in different sea zones has close correlation with the content of the alloy element. From the field data of steel corrosion rates in atmospheric zone, splash zone and immersion zone, regression analysis was used to study the correlation between the corrosion rate of steels and the amount of added alloy elements. Three regression equations were obtained in different sea zones. Based on the equations, the anti-corrosion performance of the alloy elements can be deduced which can be used to screen out low alloy steel with good anti-corrosion performance. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用特殊设计的等离子体发生器,选择等离子体产生的工艺参数,实现工艺过程的精确控制,在大气压环境下获得了性能稳定的氖气直流层流等离子体射流。与湍流等离子体射流长度较短、径向尺寸较大、工作噪音高等特点相比,层流等离于体射流长度可达到550mm,而且沿整个射流长度其径向尺寸维持不变,工作噪音很小。当气流量为120cm~3/s、弧电流在70-200A的范围时,射流长度随弧电流的增加而增加,热效率起初略有降低然后维持平稳。随气流量的增加,层流等离子体射流的热效率也增加,在弧电流为200A时,可以达到40%。实验中测

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 fi,Hes its diameter could be generated with a DC are torch by! restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including are channel geometry gas flow I ate, and feeding methods, etc. Influence of flow turbulence at the torch,nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet, with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent are let.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy reliability methods are used to study the corrosion of pipelines. Three methods are used. They consist of using fracture failure modes, failure assessment diagram (FAD) and residual strength for establishing fuzzy reliability. Calculations are made by application of JC, improved GA-JC and Mente-carlo methods. Examples for oilfield injecting water pipeline show the residual strength well agree with field data. Mente-carlo methods appear to yield results that have better agreement with field data.