22 resultados para arrangements
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper presents a method for the calculation of two-dimensional elastic fields in a solid containing any number of inhomogeneities under arbitrary far field loadings. The method called 'pseudo-dislocations method', is illustrated for the solution of interacting elliptic inhomogeneities. It reduces the interacting inhomogeneities problem to a set of linear algebraic equations. Numerical results are presented for a variety of elliptic inhomogeneity arrangements, including the special cases of elliptic holes, cracks and circular inhomogeneities. All these complicated problems can be solved with high accuracy and efficiency.
Resumo:
A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.
Resumo:
Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg.
Resumo:
Interferon (IFN)-regulatory transcription factor-1 (IRF-1) has been studied in mammals and fish but little is known about the relationship between its gene structure and nuclear 'ion of IRF-1 protein. In this study, a cDNA encoding Carassius auratus IRF-1 (CaIRF-1) was isolated from an interferon-producing cell line, C. ouratus blastulae embryonic (CAB) cells, exposed to UV-inactivated grass carp hemorrhagic virus (GCHV). The CaIRF-1 genomic locus exhibits exon-intron arrangements similar to those of other vertebrate IRF-1 loci, with nine exons and eight introns, although together with pufferfish IRF-1, CaIRF-1 distinguishes itself from other vertebrate IRF-1 genes by a relatively compact genomic size. Similar to the known IRF-1 genes, CaIRF-1 is ubiquitously expressed, and is upregulated in vitro and in vivo in response to virus, Poty I:C, or CAB INF-containing supernatant (ICS). Subcellular localization analysis confirms the nuclear distribution of CaIRF-1 protein, and reveals two nuclear localization signals (NILS), any one of which is sufficient for nuclear translocation of CaIRF-1. One NLS Locates to amino acids 117-146, and appears to be the structural and functional equivalent of the NLS in mammalian IRF-1. The second NLS (amino acids 73-115) is found within the DNA-binding domain (DBD) of CaIRF-1, and contains two regions rich in basic amino acids (''(KDKSINK101)-K-95" and ''(75)KTWKANFR(82)"). In comparison with mammalian IRF-1, in which the corresponding amino acid stretch does not seem to drive nuclear translocation, five conserved basic amino acids (K-75, K-78, R-82, K-95, and K-101) and one non-conserved basic amino acid (K-97) are present in this NLS from CaIRF-1. This observation suggests that K97 Of CaIRF-1 might be essential for the function of its second NLS, wherein the six basic aminoacids might cooperate to drive CaIRF-1 to the nucleus. Therefore, the current study has revealed a new nuclear localization motif in the DBD of a vertebrate IRF-1. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1.
Resumo:
We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
ZnO films have been fabricated on (0 0 1), (0 1 1) and (1 1 1) SrTiO3 (STO) substrates by metal-organic chemical vapour deposition (MOCVD). It is interesting that the ZnO films on (0 0 1) and (0 1 1) STO substrates show polar and semipolar orientations, which are different from previous reports, while the same growing direction of polar ZnO with previous results is found on (1 1 1) STO. For the atomic arrangements, two orthogonal domains and a single domain are observed on (0 0 1) and (1 1 1) STO, respectively. Photoluminescence spectra show that every sample has a sharp near-band-edge emission peak at about 3.28 eV without any deep-level emission band between 1.5 and 2.8 eV, implying a high optical quality. A violet emission around 3.0 eV is observed only in ZnO films on (0 0 1) and (0 1 1) STO substrates grown at 600 degrees C, which is discussed briefly. Additionally, the semipolar ZnO does not weaken the emission efficiency along with the reduction in the polarization effect compared with polar ZnO. These results show that high-quality polar and semipolar ZnO films can be grown on STO substrates by MOCVD.
Resumo:
We have studied the current-voltage properties of a double quantum dot (DQD) connected by leads in arrangements that vary from series to symmetrical parallel configurations, in the presence of strong intradot Coulomb interaction. The influences of the connecting configurations and the difference between dot levels on the magnitude and symmetry of the total current are examined. We find that the connecting configurations of the dots can determine the number of the current paths and in turn determine the magnitude of the current, while the coupling strengths between the dots and the leads together with the difference of dot levels determine the current-voltage symmetry. The negative differential conductance observed in serial DQD can be explained in terms of the reduction of the current paths. (c) 2005 American Institute of Physics.
Resumo:
To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.
Resumo:
The effect of iron promoter on the catalytic properties of Rh-Mn-Li/SiO2 catalyst in the synthesis Of C-2 oxygenates from syngas was investigated by means of the following techniques: CO hydrogenation reaction, temperature-programmed reduction (TPR), temperature-programmed desorption and reaction of adsorbed CO (CO-TPD and TPSR) and pulse adsorption of CO. The results showed that the addition of iron promoter could improve the activity of the catalysts. Unexpectedly, the yield of C-2 oxygenates increased greatly from 331.6 up to 457.5 g/(kg h) when 0.05% Fe was added into Rh-Mn-Li/SiO2 catalyst, while no change in the selectivity to C-2 oxygenates was observed. However, the activity and selectivity Of C-2 oxygenates were greatly decreased if the Fe amount exceeded 1.0%. The existence of a little iron decreased the reducibility of Rh precursor, while the reduction of Fe component itself became easier. CO uptake decreased with increasing the quantity of Fe addition. This phenomenon was further confirmed by CO-TPD results. The CO-TPD and TPSR results showed that only the strongly adsorbed CO could be hydrogenated, while the weakly adsorbed CO was desorbed. We propose that Fe is highly dispersed and in close contact with Rh and Mn; such arrangements were responsible for the high yield Of C-2 oxygenates. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new approach to one-dimensional organization of gold nanoparticles (2-4 nm) is described, using poly(4-vinylpyridine) (P4VP) molecular chain as a template with the mediation of free Cu2+ ion coordination. The assembly was conducted on freshly prepared mica surfaces and in aqueous solution, respectively. The surface assembly was characterized by tapping mode atomic force microscopy (AFM), observing the physisorbed molecules in their chain-like conformation with an average height of 0.4 nm.
Resumo:
A novel Dawson-type polyoxometalate supramolecular architecture of the formula [4,4'-H(2)bipy](2.5)center dot[4,4'-Hbipy]center dot[P2W18O62]center dot 6.25H(2)O (4,4'-bipy = 4,4'-bipyridine) has been hydrothermally synthesised and characterised by means of elemental analysis, IR, CV and X-ray single-crystal diffraction. X-ray crystallography indicates that the title compound consists of Dawson-type polyoxoaions [P2W18O62](6-), water molecules and 4,4'-bipy units. The polyoxoanion clusters together with 4,4'-bipy units and water molecules to construct the three-dimensional supramolecular network through hydrogen bonds. The crystal structure analyses reveal that water molecules and 4,4'-bipy units play the important role on the packing arrangements of crystals. Cyclic voltammetry shows that the title compound exhibits three chemically reversible steps
Resumo:
The present work describes a convenient approach to fabricate networked nonspherical gold nanostructures by using [G-2]-CO2H dendrimer and toluene as capping and bridging agents in a CH2Cl2 and H2O biphasic system. A controlled linear assembly is achieved without the use of any catalyst at room temperature. UV-vis spectrum, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) analysis show that the product is well networked nanostructures with diameter of 4-10 nm and consists of coalesced face-centered cubic gold nanocrystals. Extended experiments reveal that both benzene and dimethylbenzene can also inhabit the gold ions to make them crosslinked, prolong the nucleation points and eventually facilitate the formation of the networks.
Resumo:
Biphenyl- (Biph-) containing 1-alkynes (3 and 4) and their polymers (1 and 2) with varying bridge groups and spacer lengths were synthesized and the effects of the structural variation on their properties, especially their mesomorphism and photoluminescence behaviors, were studied. The acetylene monomers 3(3) [HCdropC(CH2)(3)O-Biph-OCO(CH2)(10)CH3] and 4(m) [HCdropC(CH2)(m)OCO-Biph-OCO(CH2)(10)-CH3, m = 3, 4] were prepared by sequential etherization and esterification reactions of 1-alkynes. While 3(3) exhibits enantiotropic crystal E and SmB mesophases, its structural cousin 4(3) displays only a monotropic SmB phase. Enantiotropic SmA and SmB mesophases are, however, developed when the spacer length is increased to 4. Polymerizations of the monomers are effected by Mo-, W-, Rh-, and Fe-based catalysts, with the WCl6-Ph4Sn catalyst giving the best results (isolation yield up to 85% and M-w up to 59000). The polymers were characterized by IR, UV, NMR, TGA, DSC, POM, XRD, and PL analyses. Compared to 1(3), 2(3) shows a red-shifted absorption, a higher T-i, and a better packed interdigitated bilayer SmA(d) structure, while the mesophase of 2(4) involves monolayer-packing arrangements of the mesogens. Upon photoexcitation, 1(3) emits almost no light but 2(m) gives a strong ultraviolet emission (lambda(max) similar to 350 nm), whose intensity increases with the spacer length.