123 resultados para argon

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用特殊设计的等离子体发生器,选择等离子体产生的工艺参数,实现工艺过程的精确控制,在大气压环境下获得了性能稳定的氖气直流层流等离子体射流。与湍流等离子体射流长度较短、径向尺寸较大、工作噪音高等特点相比,层流等离于体射流长度可达到550mm,而且沿整个射流长度其径向尺寸维持不变,工作噪音很小。当气流量为120cm~3/s、弧电流在70-200A的范围时,射流长度随弧电流的增加而增加,热效率起初略有降低然后维持平稳。随气流量的增加,层流等离子体射流的热效率也增加,在弧电流为200A时,可以达到40%。实验中测

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon-air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional modeling results show that the appearance of the long laminar plasma jet is less influenced by natural convection even as it is issuing into ambient air horizontally. However, plasma parameter distributions may deviate from axi-symmetry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arc root motions in generating dc argon-hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arc root motion on the anode surface of a dc non-transferred plasma torch was observed. Adding hydrogen changes the arc root attachment from a diffused type to a constricted type, and the arc root of Ar-H-2 plasma suddenly,jumps from one spot to another irregularly. Images of the arc root motions taken by a high-speed video camera are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When materials processing is conducted in air surroundings by use of an impinging plasma jet, the ambient air will be entrained into the materials processing region, resulting in unfavorable oxidation of the feedstock metal particles injected into the plasma jet and of metallic substrate material. Using a cylindrical solid shield may avoid the air entrainment if the shield length is suitably selected and this approach has the merit that expensive vacuum chamber and its pumping system are not needed. Modeling study is thus conducted to reveal how the length of the cylindrical solid shield affects the ambient air entrainment when materials processing (spraying, remelting, hardening, etc.) is conducted by use of a turbulent or laminar argon plasma jet impinging normally upon a flat substrate in atmospheric air. It is shown that the mass flow rate of the ambient air entrained into the impinging plasma jet cannot be appreciably reduced unless the cylindrical shield is long enough. In order to completely avoid the air entrainment, the gap between the downstream-end section of the cylindrical solid shield and the substrate surface must be carefully selected, and the suitable size of the gap for the turbulent plasma jet is appreciably larger than that for the laminar one. The overheating of the solid shield or the substrate could become a problem for the turbulent case, and thus additional cooling measure may be needed when the entrainment of ambient air into the turbulent impinging plasma jet is to be completely avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling results are presented concerning the characteristicsoflaminar and turbulentargonplasmajetsimpingingnormally upon a flat plate (workpiece) in ambient air. It is found that the presence of the flat plate significantly enhances the entrainment rate of ambient air into the jets and affects on the flow and temperature fields in the near-plate region of the jets. At comparatively large distances between the plate and the jet inlet, the axial gradients of the plasma parameters in the laminarplasmaimpinging-jets assume values much less than those in the turbulentplasmaimpinging-jets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the laminar plasma materials processing as the research background, modeling study is conducted concerning the effects of argon shroud on the characteristics of the laminar argon plasma jet impinging normally upon a flat substrate located in air surroundings. It is shown that adding shrouding gas is an effective method to reduce and control the entrainment of ambient air into the laminar plasma jet. The shrouding gas flow rate or velocity, the injection slot width and the stand-off distance of the substrate appreciably affect the air contents in the plasma near the substrate surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic measurements of the ion saturation current in the plasma plume by a double-electrostatic probe system were carried out. Regular signals obtained by the electros- tatic probe show good agreement with the stable plasma flow state. Dependence of the flow steadiness on the plasma generation parameters was discussed. As a fast response method, the double-electrostatic probe system is feasible to characterize the fluctuations in the plasma jet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using time-of-flight spectrometry, the interaction of intense femtosecond laser pulses with argon clusters has been studied by measuring the energy and yield of emitted ions. With two different supersonic nozzles, the dependence of average ion energy (E) over bar on cluster size (n) over bar in a large range of (n) over bar approximate to 3 x 10(3) similar to 3 x 10(6) has been measured. The experimental results indicate that when the cluster size (n) over bar <= 3 x 10(5), the average ion energy (E) over bar proportional to (n) over bar (0.5), Coulomb explosion is the dominant expansion mechanism. Beyond this size, the average ion energy gets saturated gradually, the clusters exhibit a mixed Coulomb-hydrodynamic expansion behavior. We also find that with the increasing gas backing pressure, there is a maximum ion yield, the ion yield decreases as the gas backing pressure is further increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature controlled filamentation is experimentally demonstrated in a temperature gradient gas-filled tube. The proper position of the tube is heated by a furnace and two ends of the tube are cooled by air. The experimental results show that multiple filaments are shrunken into a single filament or no filament only by increasing the temperature at the beginning of the filament. This technique offers another degree of freedom of controlling the filamentation and opens a new way for intense monocycle pulse generation through gradient temperature in a noble gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse compression through filamentation in an argon-filled cell was experimentally demonstrated by using circularly and linearly polarized pulses. A 53 fs circularly polarized pulse was successfully compressed to 15 fs. By using circularly polarized pulse input, the broadened spectrum was much wider and the incident energy in the gas cell can be increased by more than 3/2 times. Much shorter pulse could be compressed by using circularly polarized pulse input. [GRAPHICS] The temporal profile of the compressed pulse (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.