108 resultados para analytic semigroups
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We propose a method to treat the interfacial misfit dislocation array following the original Peierls-Nabarro's ideas. A simple and exact analytic solution is derived in the extended Peierls-Nabarro's model, and this solution reflects the core structure and the energy of misfit dislocation, which depend on misfit and bond strength. We also find that only with beta < 0.2 the structure of interface can be represented by an array of singular Volterra dislocations, which conforms to those of atomic simulation. Interfacial energy and adhesive work can be estimated by inputting ab initio calculation data into the model, and this shows the method can provide a correlation between the ab initio calculations and elastic continuum theory.
Resumo:
Recurring to the characteristic of Bessel function, we give the analytic expression or the Fresnel diffraction by a circular aperture, thus the diffractions on the propagation axis and along the boundary of the geometrical shadow are discussed conveniently. Since it is difficult to embody intuitively the physical meaning from this series expression of the Fresnel diffraction, after weighing the diffractions on the axis and along the boundary of the geometrical shadow, we propose a simple approximate expression of the circular diffraction, which is equivalent to the rigorous solution in the further propagation distance. It is important for the measurement of the parameter or the beam, such as the quantitative analysis of the relationship of the wave error and the divergence of the beam, In this paper, the relationship of the fluctuation of the transverse diffraction profile and the position of the axial point is discussed too. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
Analytic propagation expressions of pulsed Gaussian beam are deduced by using complex amplitude envelope representation and complex analytic signal representation. Numerical calculations are given to illustrate the differences between them. The results show that the major difference between them is that there exists singularity in the beam obtained by using complex amplitude envelope representation. It is also found that singularity presents near propagation axis in the case of broadband and locates far from propagation axis in the case of narrowband. The critical condition to determine what representation should be adopted in studying pulsed Gaussian beam is also given. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Experimental alpha decay energies and half-lives are investigated systematically to extract alpha particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the alpha decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.
Resumo:
Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.
Resumo:
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in an infinite piezoelectric or on the interface of piezoelectric bimaterials. For homogeneous materials it is found that the normal electric displacement D-2, induced by the crack, is constant along the crack faces which depends only on the remote applied stress fields. Within the crack slit, the perturbed electric fields induced by the crack are also constant and not affected by the applied electric displacement fields. For bimaterials, generally speaking, an interface crack exhibits oscillatory behavior and the normal electric displacement D-2 is a complex function along the crack faces. However, for bimaterials, having certain symmetry, in which an interface crack displays no oscillatory behavior, it is observed that the normal electric displacement D-2 is also constant along the crack faces and the electric field E-2 has the singularity ahead of the crack tip and has a jump across the interface. Energy release rates are established for homogeneous materials and bimaterials having certain symmetry. Both the crack front parallel to the poling axis and perpendicular to the poling axis are discussed. It is revealed that the energy release rates are always positive for stable materials and the applied electric displacements have no contribution to the energy release rates.
Resumo:
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.
Resumo:
In this paper, we study nonlinear Kramers problem by investigating overdamped systems ruled by the one-dimensional nonlinear Fokker-Planck equation. We obtain an analytic expression for the Kramers escape rate under quasistationary conditions by employing
Resumo:
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.
Resumo:
A variational principle is obtained for the Burridge-Knopoff model for earthquake faults, and this paper considers an analytic approach that does not require linearization or perturbation.
Resumo:
An embedded cell model is presented to obtain the effective elastic moduli and the elastic-plastic stress-strain relations of three-dimensional two-phase particulate composites. Each cell consists of an ellipsoidal inclusion surrounded by a finite ellipsoidal matrix that embedded in an infinite matrix. When both matrix and particle are elastic, the effective elastic moduli are derived which is an exact analytic formula without any simplified approximation that can be expressed in an explicit form. Further, the elastic-plastic stress-strain relations are obtained for spherical cells and oblate spheroid cells, in which the matrix is elastic and the particle is elastic-plastic. In addition, the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC) is investigated by a systematic approach [1] in which the matrix is elastic-plastic and the particle is elastic.
Resumo:
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in piezoelectrics or on the interfaces of piezoelectric bimaterials. A class of boundary problems involving many cracks is also solved. For homogeneous materials it is found that the normal electric displacement D-2 induced by the crack is constant along the crack faces which depends only on the applied remote stress field. Within the crack slit, the electric fields induced by the crack are also constant and not affected by the applied electric field. For the bimaterials with real H, the normal electric displacement D-2 is constant along the crack faces and electric field E-2 has the singularity ahead of the crack tip and a jump across the interface.
Resumo:
Large earthquakes can be viewed as catastrophic ruptures in the earth’s crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.
Resumo:
An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional two-phase composites which is an exact analytic formula without any simplified approximation and can be expressed in an explicit form. For the different cells such as spherical inclusions and cracks surrounded by sphere and oblate ellipsoidal matrix, the effective elastic moduli are evaluated and the results are compared with those from various micromechanics models. These results show that the present model is direct, simple and efficient to deal with three-dimensional tyro-phase composites.
Resumo:
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.