14 resultados para analyseur d`elements volatiles
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
IEECAS SKLLQG
Resumo:
The real-space recursion method and unrestricted Hartree-Fock approximation have been applied to calculate the density of states of various Co perovskite, CeCoO3, SrCoO3 and Sr1-xCexCoO3. We have studied the magnetically ordered states of these Co perovskites in an enlarged double cell, and find its various magnetic structures due to the occupancy of 3d band and its interaction with neighboring Co ions. In this study, we have studied the p-d hybridization of the three Co perovskites, we find t(2g) electrons are localized and the flat e(g) band is responsible for the itinerant behavior, and although the rare earth elements itself contribute little to the DOS at the Fermi energy, the DOS at Fermi energy and the magnetic moment changed consequently because of different valence of Co ions in these compounds and p-d hybridization effect is very important. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using the density functional method. Ground state was assigned for each species. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides an ionic component, covalent bonds are formed between the metal s, d orbitals and the silicon 3p orbital. The covalent character increases from ScSi (YSi) to NiSi (PdSi) for 3d (4d) metal monosilicides, then decreases. For 5d metal monosilicides, the covalent character increases from LaSi to OsSi, then decreases. For the dissociation of cations, the dissociation channel depends on the magnitude of the ionization potential between metal and silicon. If the ionization potential of the metal is smaller than that of silicon, channel MSi+-> M++Si is favored. Otherwise, MSi+-> M+Si+ will be favored. A similar behavior was observed for anions, in which the dissociation channel depends on the magnitude of electron affinity.
Resumo:
In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.
Resumo:
Six new compounds, alpha,beta-KaHb[GeW(9)M(3)(H2O)(3)O-37]. xH(2)O(M = Al, Ga, In; a + b = 7) and alpha-K9H5[Ge2W18Ga6(H2O)(3)O-74]. 20H(2)O, were synthesized from the lacunary precursors a and beta-GeW9O3410- and characterized by elemental analysis, spectroscopy and electrochemistry. Tungsten-183 NMR spectra of the title complexes consist of two lines with intensity ratio 2:1 as expected for trisubstituted heteropoly anions. The intensity ratio of alpha-Ga compound is 1:2, which is different from others(a:1). With the help of FAB mass spectrum, we concluded that it is a dimer with D-3h structure in aqueous, and the others exist by monomers with C-3v structures.
Resumo:
Hydrothermal fluid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep seawater hydrothermal activity, containing complex elements, cannot be used to study the seawater's contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig. 4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37 x 10(4) L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.
Resumo:
The vertical fluxes and vertical transferring forms of 18 rare elements were studied for the first time in the coral reef ecosystem of Nansha Islands, South China Sea, by deploying sediment traps, The results showed that the vertical transferring flux of most of the measured rare elements in Yongshu lagoon were higher than that in Zhubi lagoon. The vertical transferring forms of rare elements were mainly in the carbonate form, but Ta, As, Th mainly in the ion-exchange form, Ag in iron-manganese oxide form and Sb in the organic matter + sulphide form. None of the 18 rare elements was transferred mainly in the form of detritus silicate to sea floor. This proved that rare elements originating from the earth's crust were redistributed in sinking particulates after they were brought into ocean. The relation between the fluxes and surface seawater temperature (STT) was also studied. The sensitivity of rare elements to SST was in order: Rb>V>As>Ti>U>Zn>Sb>Hf>Ag>Cs.
Resumo:
The effects of hypoxia on the levels of essential macroelements and trace elements (K, Na, Ca, Mg, Cu, Zn, Fe, and Mn) in the heart muscles of Wistar rats and plateau pikas (Ochotona curzoniae) were studied by atomic absorption spectrometry. Unlike the rat, the plateau pika is tolerant to hypoxia. The levels of K, Na, and the trace element Mn were not significantly changed in rat or pika hearts after exposure to hypoxia for 1, 10, or 25 d at simulated altitudes of 5000 and 7000 m. Other minerals (Ca, Mg, Cu, Zn, and Fe) were significantly affected by hypoxia and the levels followed different time-courses under different hypoxic regimes in these two animals. There were marked differences between the rat and pika in myocardial accumulation of essential elements such as Ca, which was increased to high levels in the rat but not affected in the pika. The results suggest that hypoxia affects animal physiological mechanisms by regulating the levels of essential elements.