6 resultados para alternative modeling approaches

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, stable and long laminarplasma jets have been successfully generated, and thus it is possible to achieve low-noise working surroundings, better process repeatability and controllability, and reduced metal-oxidation degree in plasma materials processing. With such a recent development in thermal plasma science and technology as the main research background, modeling studies are performed concerning the DCarcplasmatorch for generating the long laminar argon plasma jet. Two different two-dimensional modeling approaches are employed to deal with the arc-root attachment at the anode surface. The first approach is based on circumferentially uniform arc-root attachment, while the second uses the so-called fictitious anode method. Modeling results show that the highest temperature and maximum axial-velocity at the plasmatorch exit are ~15000 K and ~1100 m/s, respectively, for the case with arc current of 160 A and argon flow rate of 1.95×10{sup}(-4)kg/s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

分析了时间Petri网的激发规则、托肯可用时间和抑制弧等特性,以及制造过程中随机故障的特征。提出不同的时间关联方式对应的多种建模方法,考虑不同的故障发现模式、不同的作业处理策略,建立相应的单机制造过程模型。在此基础上采用模块化和层次化方法可以构建复杂制造过程的时间着色Petri网模型,并可以转换成仿真模型,进一步分析随机机器故障对制造过程性能的影响。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An information preservation (IP) method has been used to simulate many micro scale gas flows. It may efficiently reduce the statistical scatter inherent in conventional particle approaches such as the direct simulation Monte Carlo (DSMC) method. This paper reviews applications of IP to some benchmark problems. Comparison of the IP results with those given by experiment, DSMC, and the linearized Boltzmann equation, as well as the Navier-Stokes equations with a slip boundary condition, and the lattice Boltzmann equation, shows that the IP method is applicable to micro scale gas flows over the entire flow regime from continuum to free molecular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Onset and evolution of the Rayleigh-Benard (R-B) convection are investigated using the Information Preservation (IP) method. The information velocity and temperature are updated using the Octant Flux Splitting (OFS) model developed by Masters & Ye based on the Maxwell transport equation suggested by Sun & Boyd. Statistical noise inherent in particle approaches such as the direct simulation Monte Carlo (DSMC) method is effectively reduced by the IP method, and therefore the evolutions from an initial quiescent fluid to a final steady state are shown clearly. An interesting phenomenon is observed: when the Rayleigh number (Ra) exceeds its critical value, there exists an obvious incubation stage. During the incubation stage, the vortex structure clearly appears and evolves, whereas the Nusselt number (Nu) of the lower plate is close to unity. After the incubation stage, the vortex velocity and Nu rapidly increase, and the flow field quickly reaches a steady, convective state. A relation of Nu to Ra given by IP agrees with those given by DSMC, the classical theory and experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared with other approaches for modeling and predicting, artificial neural networks are more effective in describing complex and non-linear systems. The occurrence of cyanobacterial blooms has been a continuous and serious problem over the past decades in hypereutrophic Lake Dianchi. Yet, the main factor(s) initiating these blooms remain(s) unclear. During 2001-2002 at 40 sampling sites in Lake Dianchi, physicochemical parameters possibly relating to the blooms were measured. Parameters directly or indirectly relating to the cyanobacterial blooms were used as driving factors in a back-propagation network to model the concentration of chlorophyll a. According to sensitivity analysis, chemical oxygen demand was identified as a very significant environmental factor for algal growth in Lake Dianchi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological fluids are important components in the earth system. To study thephysical chemistry properties and the evolution of fluid system turns out to be one of the most challenging issues in geosciences. Besides the conventional experimental approaches and theoretical or semi-theoretical modeling, molecular level computer simulation(MLCS) emerges as an alternative tool to quantificationally study the physico-chemical properties of fluid under extreme conditions in order to find out the characteristics and interaction of geological fluids in and around earth. Based on our previous study of the intermolecular potential for pure H2O and thestrict evaluation of the competitive potential models for pure CH4 and the ab initio fitting potential surface across H2O-CH4 molecules in this study, we carried out more than two thousand molecular dynamics simulations for the PVTx properties of pure CH4 and the H2O-CH4 mixtures. Comparison of 1941 simulations with experimental PVT data for pure CH4 shows an average deviation of 0.96% and a maximum deviation of 2.82%. The comparison of the results of 519 simulations of the mixtures with the experimental measurements reveals that the PVTx properties of the H2O-CH4 mixtures generally agree with the extensive experimental data with an average deviation of 0.83% and 4% in maximum, which is equivalent to the experimental uncertainty. Moreover, the maximum deviation between the experimental data and the simulation results decreases to about 2% as temperature and pressure increase,indicating that the high accuracy of the simulation is well retained in the high temperature and pressure region. After the validation of the simulation method and the intermolecular potential models, we systematically simulated the PVTx properties of this binary system from 673 K and 0.05 GPa to 2573 K and 10 GPa. In order to integrate all the simulation results and the experimental data for the calculation of thermodynamic properties, an equation of state (EOS) is developed for the H2O-CH4 system covering 673 to 2573 K and 0.01 to 10 GPa. Isochores for compositions < 4 mol% CH4 up to 773 K and 600 MPa are also determined in this thesis.