153 resultados para alpine ecosystem
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We measured ecosystem CO2 fluxes for an alpine shrubland on the north-eastern Tibetan Plateau, Qinghai, China. The study is to understand (1) the seasonal variation of CO2 flux and (2) how environmental factors affect the seasonality of CO2 exchange in the alpine ecosystem. Daytime ecosystem respiration was extrapolated from the relationship between temperature and nighttime CO2 fluxes under high turbulent conditions.Seasonal patterns of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange followed highly the seasonal change of aboveground biomass in the alpine shrubland. The net ecosystem CO2 exchange was mainly controlled by the variation of photosynthetic photon flux density, while the ecosystem respiration was closely correlated to the soil temperature at 5-cm depth. Integrated values of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange for the period from November 1, 2002 to October 31 2003 were estimated to be 1418, 1155 and 222 g CO2 m(-2) yr(-1), respectively.
Resumo:
We measured the net ecosystem CO2 exchange (NEE) in an alpine meadow ecosystem (latitude 37degrees29'-45'N, longitude 101degrees12'-23'E, 3250 m above sea level) on the Qinghai-Tibetan Plateau throughout 2002 by the eddy covariance method to examine the carbon dynamics and budget on this unique plateau. Diurnal changes in gross primary production (GPP) and ecosystem respiration (R-e) showed that an afternoon increase of NEE was highly associated with an increase of R-e. Seasonal changes in GPP corresponded well to changes in the leaf area index and daily photosynthetic photon flux density. The ratio of GPP/R-e was high and reached about 2.0 during the peak growing season, which indicates that mainly autotrophic respiration controlled the carbon dynamics of the ecosystem. Seasonal changes in mean GPP and R-e showed compensatory behavior as reported for temperate and Mediterranean ecosystems, but those of GPP(max) and R-emax were poorly synchronized. The alpine ecosystem exhibited lower GPP (575 g C m(-2) y(-1)) than, but net ecosystem production (78.5 g C m(-2) y(-1)) similar to, that of subalpine forest ecosystems. The results suggest that the alpine meadow behaved as a CO2 sink during the 1-year measurement period but apparently sequestered a rather small amount of C in comparison with similar alpine ecosystems.
Resumo:
We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Alpine meadow and shrub are the main pasture types on the Tibetan Plateau, and they cover about 35% of the total land area. In order to understand the structural and functional aspects of the alpine ecosystem and to promote a sustainable animal production system, the Haibei Alpine Meadow Research Station was established in 1976. A series of intensive studies on ecosystem structure and function, including the energy flow and nutrient cycling of the ecosystem, were the main tasks during the first 10 years. Meanwhile, studies with 5 different grazing intensities on both summer and winter pasture have been conducted. In the early years of the 1990s, the research station started to focus its research work on global warming, biodiversity and sustainable animal production systems in pastoral areas. Various methods for improving degraded pasturelands have been developed in the region.
Resumo:
This paper provides information about the distribution, structure, and ecology of the world's largest alpine ecosystem, the Kobresia pygmaea pastures in the southeastern Tibetan plateau. The environmental importance of these Cyperaceae mats derives from the extremely firm turf, which protects large surfaces against erosion, including the headwaters of the Huang He, Yangtze, Mekong, Salween, and Brahmaputra. The emphasis of the present article is on the climate-driven evolution and recent dynamics of these mats under the grazing impact of small mammals and livestock. Considering pedological analyses, radiocarbon datings, and results from exclosure experiments, we hypothesize that the majority of K. pygmaea mats are human-induced and replace forests, scrub, and taller grasslands. At present, the carrying capacity is increasingly exceeded, and reinforced settlement of nomads threatens this ecosystem especially in its drier part, where small mammals become strong competitors with livestock and the removal of the turf is irreversible. Examples of rehabilitation measures are given.
Resumo:
Prolonged floral longevity and bumblebees as dominate pollinators in alpine ecosystem have been suggested to overcome pollination limitation of alpine plants arising from the decrease of pollinator activity with increasing altitude. However, this conclusion has never been examined in the Qinghai-Tibetan Plateau (QTP), the highest and largest plateau in the world. In this study, we intended to test year-to-year correlations between floral longevity, visiting frequency and pollen limitation of this species between two populations (at 3200 m and 4000 m) of Gentiana straminea in this plateau. Pollinator exclusion elongated both male and female phases greatly at both sites, and durations of both male and female phases in natural condition varied greatly over three years. The visiting frequency of bumblebees varied greatly at the higher altitude, but seemed to be stable at the lower altitude. Seed production was pollination limited in both populations in most studied years. The floral durations, pollinator frequency and pollination limitation showed no significant and consistent variations with the increase of altitude. The previous hypothesis that the prolonged floral longevity of alpine plants can compensate for low levels of pollinator visitation therefore could not be confirmed, and our results further suggested that in the QTP platform, the altitude shows no consistent effect on the reproductive performance of this species, despite that the fluctuation of visit frequency intensified at the higher altitude.
Resumo:
Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.
Resumo:
[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.
Resumo:
The Qinghai-Tibet Plateau is characterized by extremely high radiation, which may induce down-regulation of photosynthesis in plants living in this alpine ecosystem. To clarify whether photoinhibition occurs in the alpine environment and to discern its underlying mechanisms, we examined photosynthetic gas exchange and fluorescence emission in response to the changes in photosynthetic photon flux density (PPFD) and leaf temperature under natural regimes for two herbaceous species: prostrate Saussurea superba and erect-leaved Saussurea katochaete from altitude 3250 m on the Qinghai-Tibet Plateau. S. superba intercepted a higher maximum PPFD and experienced much higher leaf temperature than the erect-leaved S. katochaete. S. superba exhibited a much higher light saturation point for photosynthesis than S. katochaete. Under controlled conditions, the former species had higher CO2 uptake rates and neither species showed obvious photosynthetic down-regulation at high PPFD. Under natural environmental conditions, however, apparent photoinhibition, indicated by reduced electron transport rate (ETR), was evident at high PPFD for both species. After a night frost, the photochemistry of S. katochaete was depressed markedly in the early morning and recovered by mid-day. After a frost-free night, it was high in the morning and low at noon due to high radiation. S. superba did not respond to the night frost in terms of daytime photochemical pattern. In both species, photochemical depression was aggravated by high leaf temperature and the erect species was more sensitive to high temperature. This study suggests that the high radiation on the Qinghai-Tibet Plateau is likely to induce rapidly reversible photoinhibition, which is related closely to plant architecture. Photochemistry in the prostrate species seems able to tolerate higher PPFD, without obvious suppression, than the erect species. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
混农季节性放牧(agropastoral transhumance)通过作物种植和畜牧生产相结合的方式对不同海拔高度带上的资源进行相互补充利用,在亚洲兴都库什地区、青藏高原、横断山、东部及南部非洲、南美安第斯地区等具有悠久的历史。这种传统的生计系统几千年以来一直是居住在该地区的人类社会和自然生态系统相互作用的主要形式之一。这种传统的资源利用方式与山地自然植被以及特殊的山地人类文化和社会特征具有密切的协同演变关系。认识和理解这一关系,是山地生态学和人类学的核心科学问题之一。近年来,山地生态系统的多重功能性及动态演变对山区社会经济可持续发展的重要意义受到人们的不断关注。本文通过对云南省德钦县的12个自然村的混农季节性放牧以及对云南德钦、四川壤塘等山地植被格局特别是高海拔地带植被格局的的详细调查,探讨青藏高原东缘地区混农季节性放牧的主要特征、系统构成及相互关系,及其在全球变化、经济全球化和市场化及现代化过程中的变化趋势,分析混农季节性放牧与高山林线格局及生态系统的互动关系,旨在探讨山地地区人类活动与自然生态系统之间的互动关系,从而为山区社会经济可持续发展、环境建设和生物多样性保护等国家战略提供理论依据。 调查结果表明,混农季节性放牧是一种适应青藏高原东部高山峡谷地区环境因子及自然资源呈明显的垂直分布、资源数量稀少而时空分布异质性极高的生存环境的一种传统经济形式。这种传统的畜牧业的主要生产目的仍然是提供当地基本生存所需的产品,饲养牲口的种类和数量取决于农户的当地需求并且受资源的限制,因而维持在比较低的水平的。分布在不同海拔高度的放牧资源在一年中被牲口利用的时间也不同,互为补充,共同构成混农季节性放牧的资源基础。根据各社区永久居住点的位置和该村的土地资源特别是牧草地资源的分布范围,牲口迁移的距离和格局有较大的差异。。天然牧场仍然是最主要的畜牧业生产资源。混农季节性放牧中的农业系统和牧业系统互为补充,共同构成调查地区完整的的生计系统,农耕活动为放牧活动提供精饲料如粮食等和冬季饲料如秸秆, 其数量往往成为家庭畜牧业生产规模的主要决定因子之一。 通过对牲口数量和结构、牲口的时空迁移格局、牧业活动在整个经济活动中的相对重要性以及牧业活动和作物种植的关系方面的研究分析,混农季节性放牧在近几十年发生了深刻的变化。主要表现在牲口数量总体下降,牲口组成发生变化,牲口移动性降低、牧业活动的经济重要性下降以及牧业活动和种植活动之间的相互依存度降低等。上述变化的根本驱动力是发生在当地、地区及全球尺度上的环境、政治、社会经济、技术和文化等的变化,从而造成当地群众畜牧生产目标、土地利用和劳动力的分布等发生了变化。当地生计系统发生的改变可能会带来对方面而深刻的政治、社会经济、文化和生态影响。 混农季节性放牧这种古老的传统生计策略面临着许多挑战,如冬季饲料短缺、草场退化、缺乏市场竞争力、经济重要性降低、对年轻人缺乏吸引力、国家缺乏专门的政策指导等。与此同时,经济全球化、市场经济、新技术的应用、替代生计机会的增加、国家对于山地生态系统的作用的重新定位等也为传统生计系统转型、实现社会与生态共赢创造了机遇。 混农季节性放牧活动对亚高山及树线交错带生态系统系统的互动方式主要体现在以下几个方面:(1)牲口啃食、践踏等影响森林群落更新,改变森林群落的组成和结构,从而影响森林群落的演替进程和植被格局。林线边缘是搭建夏棚的首选地点,因此林线及树线交错地带就成了牲口活动的主要场所之一;(2)利用火烧开辟、维持和改良高山牧场; 3)在亚高山火灾迹地的放牧活动能够阻止火烧迹地的顺向演替; 4)牧民在林线附近获取建材和薪材等活动影响高山林线附近森林的结构和功能。 在调查区域,梅里雪山、白马雪山、甲午雪山的林线海拔高度在4200-4300m之间; 四川雅江、理塘一线,林线位置多在4300-4400m;四川壤塘二林场一带的林线主体在4100-4200m,在个别地区达到4300m; 在贡嘎山的南坡和东坡一带,林线位置在3600-3700m;而在四川松潘一带,林线位置主体在3700-3800米左右。树线高度的分布趋势和林线一致。混农季节性放牧及其有关人类利用活动使研究地区很多地方高山林线降低、树线交错带宽变窄或消失。在研究地区,总体情况是,阳坡和半阳坡(南坡、西南坡等)的林线和树线比阴坡和半阴坡(北坡、东北坡等)低,变化幅度达20-200m。这种差异主要是为了开辟牧场而人为清除了南向坡自然林线及其以上的植被从而使林线位置下降所致。在南坡自然林线保留得比较好的地方,林线和树线依然可以达到甚至超过北坡林线和树线的高度。放牧活动抑制了高山林线带火烧迹地的天然更新,从而使林线位置保持在目前的位置。 放牧活动对高山林线带森林群落更新的影响是显著的。自然林线内的乔木个体密度特别是新生苗和幼苗的密度大大高于非自然林线。没有放牧的自然林线及树线交错带内的I级个体(新生苗)密度达到725-2917株/公顷,而与之相对的处理样地内I级个体的密度只有0-228株/公顷;II级个体(高度10-50cm)也表现出类似的趋势,在没有放牧的自然林线及树线交错带样方内,其密度达到550-5208株/,而在放牧处理样方内只有14-321株/公顷。在非自然林线带样地内,在有正常放牧的样地内,完全缺乏I级个体。 从相对比例来看,没有放牧的样方内的I、II级个体在全部个体中所占的比例显著高于有放牧活动的样方。放牧使林线交错带的乔木幼苗数量显著减少,从而影响林线及树线交错带森林群落的天然更新过程。林线和树线交错带的灌木对乔木幼苗具有重要的保护作用,能够为树线树种如冷杉等幼苗的定居体提供有利的微气候环境,同时保护苗免受牲口的啃食和践踏。火烧以后接着进行放牧能够100%地抑制高山林线带的幼苗更新。 高山牧场放牧强度降低、使用时间缩短而低海拔地带放牧强度增加是研究地区混农季节性放牧系统的一个显著变化。这种变化也必然会引起各海拔带上的生态系统的变化。放牧强度的降低、生产性用火的停止将导致原来通过人工火烧而降低并通过进一步的火烧和放牧活动来维持的林线及其以上地带的灌木盖度和高度的增加,从而为林线森林群落的扩张创造条件。 青藏高原东部高山峡谷地区是我国重要的山地生态系统,在我国的生物多样性保护、生态环境建设、社会经济可持续发展战略中具有举足轻重的作用。正确认识人类特别是当地传统的生计系统与生态环境系统的互动关系是实现上述战略目标的前提。决策者必须以综合、系统的的视角协调促进社会经济可持续发展、保护生物及文化多样性和维持人、牲口和生态系统之间的平衡的多重目标。 Agropastoral transhumance, which makes a complementary exploitation of the natural resources at different altitudinal belts through a combination of migratory animal husbandry and crop cultivation, has a long history in Hindu-Kush Himalaya, Tibet Plateau, Hengduan Ranges, eastern and southern Africa and the Andes region of south America.For millennia, this traditional livelihood strategy has been one of the main forms of interaction between human societies inhabiting in these regions and their natural ecocystems. A close co-evolutionary relationship has been developed between this indigenous resources management systems and the mountain vegetation systems on the one hand and a unique set of cultural values and social features on the other. Understanding this relationship has been one of the core scientific issues in mountain ecology and anthropology. In recent years, the importance of the multiple functions of the mountain ecosystems and their dynamic changes in the sustainable socio-economic development of the mountain regions has gained increasing attention. This paper, which is based on a detailed study on the agropastoral practices of the 12 natural villages in Deqin County of Yunnan, and the mountainnn vegetation patterns in Deqin of Yunnan and Rangtang County of Sichuan, intends to reveal the major characteristics, system composition and the inter-relations of the subsystems of the agropastoral transhumance in Eastern Tibetan Plateau as well as the trends of changes of the system within the context of global changes, economic globalization and modernity process of China and analyze the relations between agropastoral transhumance and alpine ecosystem, ao as to understand the interactions between human activities and natural ecosystems of the mountains and provide theoretical basis for the national strategies in eocioeconomic development, environmental reconstruction and biodiversity conservation in the mountain regions. Results of the survey indicate that agropastoral transhumance in the investigated area is a traditional economic form that is highly adapted to the eastern Tibet Plateau where the topography features high peaks and deep gorges and where the highly variable environmental parameters and scanty natural resources exhibit a distinct vertical spectrum of distribution and great temporal and spatial heterogeneity. The main objective of pastoral management is still aimed at the production of basic goods and services of local people and thus the type and size of animals raised for each household mainly depend on local needs and are limited by the availability of natural resources. The scale of production is relatively low. Pastoral resources at different altidudinal belts are complementarily used at different seasons of a year and thus form the resources basis for agropastoral production of the study area. Migration distances and patterns vary with the location of the permanent settlements, the elevational distribution range of the resources of the villages concerned. Natural pastures (rangelands) are the main fodder resources and sumplement feedings only account for less than 5% of the total fodder consumption. Crop cultivation and pastoral activities support each other to form a complete livelihood system. The ability of the farmig lands (crop cultivation) to provide the pastoral activities with concentrates and sumplements often becomes a main factor limiting the scale of livestock production at household level. Agropastoral transhumance is experiencing drastic changes in recent decades as is reflected in the size and composition of animals, the seasonal migration pattern, the relative importance of pastoralism in the household economy and the interplays of agricultural and pastoral elements of the system. In general, there is a decline in animal population and mobility, a shift in animal composition to meet new needs arising from changed macro-economic situation, a decrease in the relative importance in the household economy and an increasing decoupling of agro&pastoral relations. The fundamental divers of these changes can be traced to environmental, social, economic, technological and cultural changes from local to global levels and such changes have further caused local changes in livestock management objectives, land use and distribution of labor forces. Changes in local livelihood systems could have profound political, socioeconomic, cultural and ecological conseuquences. Agropastoral transhumance, as an age-old traditional livelihood strategy, is facing multifacet challenges, such as winter fodder shortage, rangeland degradation, lack of market competitiveness, decrease in economic importance, lack of appreciation among the young generation and adequate policies from the government. At the same time, economic globalization, market economy, intrdoctution of new technologies, increase of alternative income generating opportunities and the national re-oreitation of policies on mountain ecosystems have all brought about new opportunities for the transformation of the traditional livelihood system and the synchronized development of local society and the environment. Agropastoral transhumance interacts with the ecosystems at the timberline and treeline ecotone mainly through the following aspects: 1)Animal browsing and stamping affect the regeneration process of the forest communities and alters the composition and structure of the forest which in turn affect the succession process and vegetation pattern of the forest communities. Forest edges are the priority locations for summer houses and therefore the timeline and treeline area becomes the major venues of aninal activities; (2)herders create, maintain and improve pastures through burning that remove the forest communities at the timeline and treeline ecotone; 3)immediate grazing on the fire sites can significantly prevent the fire sites from perogressive succession; and 4)herders harvesting of construction timber and firewoods affects the structure and functions of the forest communities at the timberline and treeline zone. Timberline position in the survey region shows geographical variations. It is around 4200-4300m in Meilixueshan, Baimaxueshan and Jiawuxueshan in Northwest of Yunnan and rises to 4300-4400m in Yajiang County and Litang County of Sichuan. In Rangtang of Sichuan, it is between 4100-4200m, though reaching 4300m in localized sites. In the southern and eastern slopes of Gongga Mountain, the timberline is only between 3600m and 3700m and in Songpan County at the upper reach of the Minjiang River the timberline is around 3700-3800m.Treeline pattern follows similar trend. In many places, agropastoral transhumance and related human activities have lowered the timberline and treeline and narrowed or removed the treeline ecotone. In the area of survey, generally speaking, timberlines and treelines are lower on the southern slopes than on the northern slopes, with a difference between 20 and 200m. This is mainly because that the use of fires to crerate pastures has removed the forest vegetation at the previous timberline and above. In fact, in many places, well-preserved forests on the south slopes have even high timberline position that the corresponding northern slopes. At subalpine zone, grazing activities could have prohibited the natural regeneration of many forest fire sites and maintained the forest position at the present level. Grazing has a significant impact on the regernation process of forest communities at the timberline zone. Natural timberline and treeline ecotone has much higher density of treeline species individuals especially the emergents and seedlings than the timberlines that are maintained by human activities. In natural timberline and treelien ecotone without grazing interference, the density of the I Class seedlings (less than 10cm in height) ranges 725-2917 /hm2; while that in the treatment plots (with grazing disturbance) is only 0-228//hm2;II Class seedlings (10-50cm)exhibit similar density trends, reaching 550-5208//hm2 in natural timberline without grazing but only 14-321//hm2 in the plots with grazing treatment. In the man-created timberlines, there is no I Class seedling at all in plots with normal grazing activities. In relative terms, in plots without grazing activities, the propotion of I Class and II Class seedlings is much higher than that in plots with grazing. Grazing activities have significantly reduced the number of seedlings in the timberline ane treeline ecotone, and thus affect the natural regeneration process of the forests. Shrubs at the timberline and treeline ecotone can effectively protect the seedlings from severe climate and animal tramping, thus increasing the survival rate of the seedlings. Grazing following fires can completely inhibit forest regeneration process at timberline. Changes in agropastoral transhumance will have great impact on the timberline and treeline pattern of the studied area. The decrease in grazing intensity on alpine pastrues and the cessation of the use of fires will result an increase in the cover and height of shrubs above the present human-maintained treeline, which will create further condition for the expansion of timberline forest communities. Eastern Tibet Plateau harbors some most important mountain ecosystems of China that are of vital importance to the country’s strategy in biodiversity conservation, environmental construction and sustainable sociaoeconomic development. A proper knowledge of the interactions between traditional livelihood systems and the ecosystems in the region is a precondition to the realization of the above strategic goals. Therefore, the decision-makers must have a holistic and systemic perspective so as to integrate the multiple objectives of promoting sustainable socioeconomic development, conserving biological and cultural diversity and maintaining the balances among people, animal population and the ecosystems.
Resumo:
To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.
Resumo:
Using the measurement of stable carbon isotopes in leaves as a tool to investigate photosyn-thetic pathway of 102 plant species grown at an alpine meadow ecosystem, at the foot of the Qilian Mountain, Qinghai, China. The results indicate that the δ~(3)C values of plants have a narrow range from -28.24‰ to -24.84‰, which means that none of the species examined belongs to C_4 and crassulaceous acid metabolism (CAM) photosynthetic pathway and all of these species perform photosynthesis through the C_3 pathway. This is likely due to a long-term adaptation to environments at the alpine meadow ecosystem.
Resumo:
From 30 June to 24 September in 2003 ecosystem respiration (Re) in two alpine meadows on the Tibetan Plateau were measured using static chamber- and gas chromatography- (GC) based techniques. Simultaneously, plant removal treatments were set to partition Re into plant autotrophic respiration (Ra) and microbial heterotrophic respiration (Rh). Results indicated that Re had clear diurnal and seasonal variation patterns in both of the meadows. The seasonal variability of Re at both meadow sites was caused mainly by changes in Ra, rather than Rh. Moreover, at the Kobresia humilis meadow site (K_site), Ra and Rh accounted for 54% and 46% of Re, respectively. While at the Potentilla fruticosa scrub meadow (P_site), the counterparts accounted for 61% and 39%, respectively. T test showed that there was significant difference in Re rates between the two meadows (t = 2.387, P = 0.022). However, no significant difference was found in Rh rates, whereas a significant difference was observed in Ra rates between the two meadows. Thus, the difference in Re rate between the two meadows was mainly attributed to plant autotrophic respirations. During the growing season, the two meadows showed relatively low Q(10) values, suggesting that Re, especially Rh was not sensitive to temperature variation in the growing season. Additionally, Re and Rh at the K_site, as well as Rh at the P_site was negatively correlated with soil moisture, indicating that soil moisture would also play an important role in respirations.
Resumo:
High-resolution sampling, measurements of organic carbon contents and C-14 signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of C-14 tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12x10(4) kg C hm(-2) to 30.75x10(4) kg C hm(-2) in the alpine meadow ecosystems, with an average of 26.86x10(4) kg C hm(-2). Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m(-2) a(-1) to 254.93 gC m(-2) a(-1), with an average of 191.23 g C m(-2) a(-1). The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m(-2) a(-1) to 181 g C m(-2) a(-1). More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%. 81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.