404 resultados para alkali-aggregate reaction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.
Resumo:
The hydrogenation of alkali metals using lanthanide trichloride and naphthalene as catalyst has been studied. LnCl3(Ln = La, Nd, Sm, Dy, Yb) and naphthalene can catalyze the hydrogenation of sodium under atmospheric pressure and 40-degrees-C to form sodium hydride. The activities of lanthanide trichlorides are in the following order: LaCl3 > NdCl3 > SmCl3 > DyCl3 > YbCl3. Although lithium proceeds in the same catalytic reaction, the kinetic curve of the lithium hydrogenation is different from that of sodium. Lanthanide trichlorides display no catalytic effect on the hydrogenation of potassium in presence of naphthalene. The mechanism of this reaction has been studied and it is suggested that the anion-radical of alkali metal naphthalene complexes may be the intermediate for the hydrogenation of alkali metals and the function of LnCl3 is to catalyze the hydrogenation of the intermediate. The products are porous solids with high specific surface area (83 m2/g for NaH) and pyrophoric in air. They are far more active than the commercial alkali metal hydrides. The combination of these hydrides with some transition metal complexes exhibits high catalytic activity for the hydrogenation of olefins.
Resumo:
采用高精度的ENO格式和基于基元化学反应的真实化学反应模型求解氢氧混合气体一维爆轰波的精细结构。采用直接起爆方法得到稳定传播的爆轰波,计算的爆轰波阵面参数和实验相当符合。对爆轰波反应区化学反应的研究表明,参与反应的不同组分具有不同类型的变化特征。网格尺寸影响的研究表明,计算结果的精度随着网格尺寸的增加而增加,并能保持较好的收敛性。移动网格研究结果表明,网格运动速度和爆轰速度接近时,两者的相互作用对计算结果产生一定影响。
Resumo:
The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).
Resumo:
The deformation of alkali metals K, Rb, and Cs under epitaxial deformation is studied via the ab initio pseudopotential plane wave method using the local-density approximation. Under loading from the stable fee phase, metastable stares along directions [001], [111], and [201] are identified. One metastable state, presented at direction [201], has a very low symmetry in contrast to the planes [001] and [201]. Our results show that the softening direction and sequences of growth is significantly affected by the existence of the metastable states and magnitude of the energy barrier. The resulting softening sequences from soft to hard are [201], [110], [001], and [111] under biaxial compression and [001], [111], [201], and [110] under biaxial tension. An orthorhombic deformation path is used to investigate the fact, that the structure of the alkali films K and Cs evolve from the quasihexagonal structure into the (110)-oriented bcc structure, observed by experiments.
Resumo:
The aggregates in lysozyme solution with different NaCl concentration were investigated by Atomic Force Microscope (AFM). The AFM images show that there exist lysozyme monomers, n-mers and clusters in lysozyme solution when the conditions are not suitable for crystal growth. In favorable conditions for crystal growth, the lysozyme clusters disappear and almost only monomers exist in solution.
Resumo:
In this paper we deduce the formulae for rate-constant of microreaction with high resolving power of energy from the time-dependent Schrdinger equation for the general case when there is a depression on the reaetional potential surface (when the depression is zero in depth, the case is reduced to that of Eyring). Based on the assumption that Bolzmann distribution is appropriate to the description of reactants, the formula for the constant of macrorate in a form similar to Eyring's is deduced and the expression for the coefficient of transmission is given. When there is no depression on the reactional potential surface and the coefficient of transmission does not seriously depend upon temperature, it is reduced to Eyring's. Thus Eyring's is a special case of the present work.
Resumo:
Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing N2+-doped beta-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the T-3(2g) (F-3) -> (3)A(2g) (F-3) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and similar to 1220 mu s, respectively. It is expected that transparent Ni2+-doped beta-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.
Resumo:
Er3+-doped lithium-potassium mixed alkali aluminophosphate glasses belonging to the oxide system xK(2)O-(15x)Li2O-4B(2)O(3)-11Al(2)O(3)-5BaO-65P(2)O(5) are obtained in a semi-continuous melting quenching process. Spectroscopic properties of Er3+-doped glass matrix have been analysed by fitting the experimental data with the standard Judd-Ofelt theory. It is observed that Judd-Ofelt intensity parameters-Omega(t)(t=2, 4 and 6) of Er3+ change when the second alkali is introduced into glass matrix. The variation of line strength S-ed[I-4(13/2),I-4(15/2)] follows the same trend as that of the Omega(6) parameter. The effect of mixed alkali on the spectroscopic properties of the aluminophosphate glasses, such as absorption cross-section, stimulated emission cross-section, spontaneous emission probability, branching ratio and the radiative lifetime, has also been investigated in this paper.
Resumo:
Lithium sodium mixed alkali aluminophosphate glasses of the composition xNa(2)O-(15-x)Li2O-4B(2)O(3)-11Al(2)O(3)-5BaO-65P(2)O(5) (where x=0, 3.75, 7.5, 11.25 and 15 mol%) containing 0.5 mol% Er2O3 were prepared by melt quenching. The absorption spectra of Er3+ were studied from the experimental oscillator strengths and the Judd-Ofelt intensity parameters were obtained. The variations of Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), experimental oscillator strengths of certain excited states of Er3+ and hypersensitive band positions with different mixed alkali content have been discussed in detail. It was found that there were similar effects of mixed alkali on both Judd-Ofelt intensity parameter 02 and the experimental oscillator strength of the hypersensitive transition, I-4(15/2) -> H-2(11/2). No shifts in the peak wavelength of the studied transitions were found in different glasses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability and structure of RF-RF2-AIF(3)-Al(PO3)(3) fluorophosphate glasses were investigated. Analyses of infrared absorbance spectra and Raman spectra reveal that with increasing number of alkali and alkaline earth fluoride components, the sum of P-O-P bond and O-P-O bond increases and glass network is strengthened. Consequently, the inhibition to nucleation and crystallization processes is improved, which is proved by the increment of thermal stability factors AT and S determined by differential scanning calorimetry. In addition, it was found that LiF has poor ability to form glass in univalent alkali fluorides and MgF2 has comparative strong ability to form glass in bivalent alkaline earth fluorides. (c) 2006 Published by Elsevier B.V.
Resumo:
Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.