220 resultados para adsorbed

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEECAS SKLLQG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review surveys the recent progress in the adsorbed stationary phases for capillary electrochromatography (CEC). Adsorption-based methods for preparation of stationary phase are novel approaches in CEC, which allow rapid and facile preparing stationary phases with desirable selectivity onto an open-tubular fused-silica capillary, a baresilica or ion-exchange packed column or a monolithic silica or polymer column. A variety of adsorbing agents have been developed as adsorbed stationary phases, including ionic long-chain surfactant, protein, peptide, amino acid, charged cyclodextrin (CD), basic compound, aliphatic ionene, and ion-exchange latex particle. The adsorbed stationary phases have been applied to separation of neutral, basic and acidic organic compounds, inorganic anions and enantiomers. They have also been applied to on-line sample concentration, fast separation and study of the competitive binding of enantiomers with protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (CNTs)-modified electrode has been prepared by using ionic liquid (IL) as the binder. The as-prepared CNTs-IL composite modified electrode has good biocompatibility and is a suitable matrix to immobilize biomolecules. Glucose oxidase (GOx), containing flavin adenine dinucleotide as active site, stably adsorbed on modified electrode surface has resulted in the direct electron transfer. The electron transfer rate of 9.08 s(-1) obtained is much higher than that of GOx adsorbed on the CNTs papers (1.7 s(-1)), and the process is more reversible with small redox peak separation of 23 mV This may be due to the synergetic promotion of CNTs and IL to electron transfer of the protein, especially the IL as the binder, showing better electrochemical properties than that of chitosan and Nafion. Furthermore, GOx adsorbed at the modified electrode exhibits good stability and keeps good electrocatalytic activity to glucose with broad linear range up to 20 mM. Besides, the simple preparation procedure and easy renewability make the system a basis to investigate the electron transfer kinetics and biocatalytic performance of GOx and provide a promising platform for the development of biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.