20 resultados para Zirconocene
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Zirconocene catalyst was heterogenized inside an organosilane-modified montmorillonite (MMT) pretreated by calcination and acidization, for supported catalyst systems with well-spaced alpha-olefin polymerization active centers. The varied pretreatment and modification conditions of montmorillonite are efficient for supported zirconocene catalysts in control of polyethylene microstructures, in particular, molecular weight distribution. In contrast to other supported catalyst systems, Cp2ZrCl2/modified montmorillonite(MMT-7)-supported catalysts with a distinct interlayer structure catalyzed ethylene homopolymerization and copolymerization with I-octene activated by methylaluminoxane (MAO), resulting in polymers with a bimodal molecular weight distribution (MWD).
Resumo:
Ethylene homopolymerizations and copolymerizations were catalyzed by zirconocene catalysts entrapped inside functionalized. montmorillonites that had been rendered organophilic via the ion exchange of the interlamellar cations of layered montmorillonite with hydrochlorides Of L-amino acids (AAH(+)Cl(-)) or their methyl esters (MeAAH(+)Cl(-)), with or without the further addition of hexadecyltrimethylammonium bromide (C16H33N+Me3Br-; R4N+Br-). In contrast to the homogeneous CP2ZrCl2/methylaluminoxane catalyst for ethylene homopolymerizations and copolymerizations with 1-octene, the intercalated Cp2ZrCl2 activated by methylaluminoxane for ethylene homopolymerizations and copolymerizations with 1-octene proved to be more effective in the synthesis of polyethylenes with controlled molecular weights, chemical compositions and structures, and properties, including the bulk density. The effects of the properties of the organic guests on the preparation and catalytic performance of the intercalated zirconocene catalysts were studied.
Resumo:
Macroporous functionalized. polymer beads of poly(4-vinylpyridine-co-1,4-divinylbenzene) [P(VPy-co-DVB)] were prepared by a multistep polymerization, including a polystyrene (PS) shape template by emulsifier-free emulsion polymerization, linear PS seeds by staged template suspension polymerization, and macroporous functionalized polymer beads of P(VPy-co-DVB) by multistep seeded polymerization. The polymer beads, having a cellular texture, were made of many small, spherical particles. The bead size was 10-50 mum, and the pore size was 0.1-1.5 mum. The polymer beads were used as supports for zirconocene catalysts in ethylene polymerization. They were very different from traditional polymer supports. The polymer beads could be exfoliated to yield many spherical particles dispersed in the resulting polyethylene particles during ethylene polymerization. The influence of the polymer beads on the catalytic behavior of the supported catalyst and morphology of the resulting polyethylene was investigated.
Resumo:
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3](+) (MeGlyH(+)) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonlites [high-purity montmorillonite (MMT)-MeGlyH(+)] had larger interlayer spacing (12.69 Angstrom) than montmorillonites without treatment (9.65 Angstrom). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT-MeGlyH(+)] had much higher Zr loading and higher activities than those of' other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT-MeGlyH(+), Cp2ZrCl2/MAO/MMT, [CP2ZrCl](+)[BF4]/MMT, [Cp2ZrCl][BF4](-)/MMT-MeGlyH(+), [CP2ZrCl](+)[BF4](-)/MAO/MMT-MeGlyH(+), and [Cp2ZrCl](+)[BF4](-)/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (CP2ZrCl2/MAO/MMT-MeGlyH(1)). MeGlyH(+) and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed.
Resumo:
The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A novel polymer-supported metallocene catalyst with crosslinked poly(styrene-co-acrylamide) (PSAm) as the support has been prepared and characterized. The probability of long sequences of acrylamide (Am) in PSAm is still low even at an Am amount of 32.8 mol %, implying the relatively homogeneous distribution of Am. The infrared spectra of PSAm and the supported catalyst substantiate that an amide group in PSAm coordinates with methylaluminoxane through both oxygen and nitrogen atoms. Ethylene/alpha-octene copolymerization showed that the catalytic activity is not markedly affected by adding alpha-octene. C-13 NMR analysis of the ethylene/alpha-octene copolymer indicated that the composition distribution of the copolymer is uniform. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The use of crosslinked poly(styrene-co-4-vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4-vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C-N in the pyridine ring, and a new absorption band appeared at about 730 cm(-1) indicating a stable bond Al-N formed in the polymer-supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer-supported zirconocene was discussed as well. (C) 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37-46, 1999.
Resumo:
Ethylene polymerization by zirconocene-B(C6F5)(3) catalysts with various aluminum compounds has been investigated. It is found that the catalytic activity depended on zirconocenes used, and especially on the type of aluminum compounds. For Et(H(4)Ind)(2)ZrCl2 (H(4)Ind : tetrahydroindenyl), the activity decreases in the following order: Me3Al > i-Bu3Al > Et3Al much greater than Et2AlCl. While for Cp2ZrCl2(Cp : cyclopentadienyl), it varies as follows: i-Bu3Al > Me3Al much greater than Et3Al. Furthermore, the activity is significantly affected by the addition mode of the catalytic components, which may imply that the formation of active centers is associated with an existing concentration of catalytic components. Results of thermal behavior of polyethylene (PE) studied by differential scanning calorimetry(DSC) show that crystallinity of the polymer prepared with Et3Al is higher than that with Me3Al or i-Bu3Al. It is also found that the number-average molecular weight ((M) over bar) of the polymers prepared with Me3Al or i-Bu3Al is much higher than that with Et3Al. H-1-NMR studies substantiate that i-Bu3Al is a more efficient alkylation agent of Cp2ZrCl2 in comparison with Me3Al. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The title compound, dichlorobis{eta(5)-[1-(3-methylbutyl)-cyclohex-1 -yl]cyclopentadienyl}zirconium(IV), [ZrCl2-(C16H25)(2)], has a pseudo-tetrahedral bent-metallocene structure in which the substituted cyclopentadienyl rings are asymmetrically bonded to the central Zr atom, due primarily to the interaction between the large substituents and the Cl atoms. The molecule has local C-2 symmetry with the substituents positioned in a trans arrangement and directed towards the lateral sectors of the bent-metallocene unit.
Resumo:
The five complexes (RC5H4)2M(S2CNBz2)Cl (R = H, CH3; M = Ti, Zr, Hf; Bz = CH2C6H5) have been prepared by the reaction of (RC5H4)2MCl2 with anhydrous sodium salts of dibenzyldithiocarbamate in refluxing CH2Cl2. These complexes have been characterized by elemental analysis, IR and H-1 NMR. X-ray crystal structure determination of Cp2Zr(S2CNBZ2)Cl shows the molecule has a five-coordinate bent metallocene geometry in which the zirconium atom is attached to two eta-5-C5H5 groups, one bidentate dibenzyldithiocarbamate ligand and one chlorine [Zr-Cl, 2.549(1) angstrom; Zr-S, 2.734(1), 2.667(1); Cl-Zr-S, 137.6(1)-degrees and 73.3(1)-degrees; S-Zr-S, 64.3(1)-degrees]. The catalytic system Cp2Ti (S2CNBZ2)Cl-NaH exhibits high initial catalytic activity of hydrogenation of hexene-1 under mild conditions.
Resumo:
该工作制备了一系列新型载体负载茂锆催化剂,其载体涉及到功能化无机-聚合物复合材料、功能化多孔聚合物材料和功能化无机材料.主要工作和结论如下:一.新型苯乙烯-co-4-乙烯基吡啶共聚物/SiO<,2>壳核载体负载茂锆催化剂用于乙烯聚合.二.新型grape-type孔结构的聚(4-乙烯基吡啶)聚合物载体负载茂金属催化剂用于乙烯聚合.三.改性蒙脱土负载茂金属催化剂用于乙烯聚合.四.可控层间域结构的改性蒙脱土载体负载茂金属催化剂用于乙烯聚合.
Resumo:
Copolymerizations of ethylene with 5-vinyl-2-norbornene or 5-ethylidene-2-norbornene under the action of various titanium complexes bearing bis(beta-enaminoketonato) chelate ligands of the type, [(RN)-N-1=C(R-2)CH=C(R-3)O](2)TiCl2 (1, R-1=Ph, R-2=CF3, R-3=Ph; 2, R-1=C6H4F-p, R-2=CF3, R-3=Ph; 3, R-1=Ph, R-2=CF3, R-3=t-Bu; 4, R-1=C6H4F-p, R-2=CF3, R-3=t-Bu; 5, R-1=Ph, R-2=CH3, R-3=CF3; 6, R-1=C6H4F-p, R-2=CH3 R-3=CF3), have been shown to occur with the regioselective insertion of the endocyclic double bond of the monomer into the copolymer chain, leaving the exocyclic vinyl double bond as a pendant unsaturation. The ligand modification strongly affects the copolymerization behaviour. High catalytic activities and efficient co-monomer incorporation can be easily obtained by optimizing the catalyst structures and polymerization conditions.
Resumo:
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.
Resumo:
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.
Resumo:
Ansa-zirconocene complex with an allyl substituted silane bridge [(CH2=CHCH2)CH3Si(C5H4)(2)]ZrCl2 (1a) has been synthesized and characterized. The molecular structure of la has been determined by X-ray crystallographic analysis. The polymer immobilized metallocene catalyst 1b is prepared by the co-polymerization of la with styrene in the presence of radical initiator. The result of ethylene polymerization showed that the polymer immobilized metallocene catalyst kept high activity for ethylene polymerization and was a potential supported catalyst for olefin polymerization.